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Abstract
We present an extension of convex-hull non-
negative matrix factorization (CH-NMF) which
was recently proposed as a large scale variant
of convex non-negative matrix factorization (C-
NMF) or Archetypal Analysis (AA). CH-NMF
factorizes a non-negative data matrix V into two
non-negative matrix factors V ≈ WH such that
the columns of W are convex combinations of
certain data points so that they are readily in-
terpretable to data analysts. There is, however,
no free lunch: imposing convexity constraints
on W typically prevents adaptation to intrinsic,
low dimensional structures in the data. Alas,
in cases where the data is distributed in a non-
convex manner or consists of mixtures of lower
dimensional convex distributions, the cluster rep-
resentatives obtained from CH-NMF will be less
meaningful. In this paper, we present a hierarchi-
cal CH-NMF that automatically adapts to inter-
nal structures of a dataset, hence it yields mean-
ingful and interpretable clusters for non-convex
datasets. This is also conformed by our ex-
tensive evaluation on DBLP publication records
of 760,000 authors, 4,000,000 images harvested
from the web, and 150,000,000 votes on World
of Warcraft guilds.

1 Introduction
Modern applications of data mining and machine learning
in computer vision, natural language processing, compu-
tational biology, and other areas often consider massive
datasets and we need to run expensive algorithms such as
principle component analysis (PCA), latent Dirichlet allo-
cation (LDA), or non-negative matrix factorization (NMF)
to extract meaningful, low-dimensional representations.

If the data are words contained in documents, these
methods yield topic models representing each document
as a mixture of a small number of topics and each word
is attributable to one of the topics. In computer vision,
where it is common to represent images as vectors in a
high-dimensional space, they extract visual words and have
been used for face and object recognition, or color segmen-
tation. Social networks such as Flickr, Facebook, or Mys-
pace allow for a wide range of interactions amongst their
members, resulting in massive, temporal datasets relating
users, media objects, and actions. Here, low-dimensional
representations may identify and summarize common so-
cial activities.

Therefore, given massive matrices of hundreds of mil-
lions of entries, how can we efficiently factorize them?
How can we create meaningful, low-dimensional represen-
tations? How can we gain inside into the dataset? These
are precisely the questions which we address in this paper.

A recent positive development in data mining and ma-
chine learning has been the realization that massive datasets
are not only challenging but may as well be viewed as
an opportunity [Torralba et al., 2008; Talwalkar et al.,
2008]. Machine learning and data mining techniques typ-
ically consist of two parts: the model and the data. Most
effort in recent years has gone into the modeling part. Mas-
sive datasets, however, allow one to move into the opposite
direction: how much can the data itself help us to solve
the problem? Halevy et al. [2009] even speak of the “the
unreasonable effectiveness of data”. Massive datasets are
likely to capture even very rare aspects of the problem at
hand. Along this line, Thurau et al. [2009] have recently in-
troduced a data-driven NMF approach, called convex-hull
NMF, that is fast and scales extremely well: it can effi-
ciently factorize gigantic matrices and in turn extract mean-
ingful “clusters” from massive datasets containing millions
of images and ratings. The key idea is to restrict the “clus-
ters” to be combinations of vertices of the convex hull of
the dataset; thus directly exploring the data itself to solve
the convex NMF problem.

There is, however, no free lunch: by restricting the “clus-
ters” to combinations of vertices of the convex hull of the
dataset, convex-hull NMF cannot adapt to the intrinsic, low
dimensional structure of the data anymore. Intuitively, for
data modeled by Gaussians, i.e., as a combination of con-
vex sets, convex-hull NMF will assign clusters to the “ex-
treme” Gaussians and not to each Gaussian. Our main con-
tribution is a simple and, hence, powerful and scalable gen-
eralization of convex hull NMF that automatically adapts
to the intrinsic (low dimensional) structure in the data. The
main insight is that one can use FastMap due to Faloutsos
and Lin [1995] within convex-hull NMF to compute the
convex hull vertices on massive datasets. Consequently,
we can still solve the convex NMF problem but addition-
ally adapt to the intrinsic structure in the data, when we
split the data along each 1D FastMap line recursively, stop
when some minimum node size is reached, and apply a
post-pruning step. This way, we get meaningful clusters
that respect the structure of the data, i.e., that diversify the
results even better than convex-hull NMF. Our extensive
experimental evaluation shows that the method, called hi-
erarchical convex-hull NMF, achieves similar reconstruc-
tion quality as convex-hull NMF with only a small over-
head while it produces more diversified clusters on DBLP
publication records of 760.000 authors, 4 million tiny im-
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Figure 1: The basis vectors resulting from different NMF variants applied to the CBCL Face Database 1. (a) Standard
NMF results in part-based, sparse representations. Data points cannot be expressed as convex combinations of these basis
elements. (b) Convex NMF (C-NMF) yields basis elements that allow for convex combinations. Moreover, the basis
vectors are “meaningful” since they closely resemble given data points. They are, however, not indicative of characteristic
variations among individual samples. (c) Convex-Hull NMF (CH-NMF) diversifies the basis vectors resulting in pale faces,
faces with glasses, faces with beards, and so on. (d) Hierarchical CH-NMF (HCH-NMF) as proposed in the current paper
also diversifies the results. Additionally, it automatically groups them, i.e., it identifies structure within the data. The
induced hierarchical decomposition is shown together with the number of images falling into the corresponding subtrees.

ages, and 150 million votes on World of Warcraft guilds.
We proceed as follows. We start off by briefly review-

ing non-negative matrix factorization (NMF) in Section 2,
including convex NMF and convex-hull NMF. Then, we in-
troduce hierarchical convex-hull NMF in Section 3. Before
concluding, we present our extensive experimental evalua-
tion in Section 4.

2 Non-Negative Matrix Factorization

Assume an m × n input data matrix V = (v1, . . . ,vn)
consisting of n column vectors of dimensionality m. We
consider factorizations of the form V ≈ Wm×kHk×n .
The resulting matrix W contains a set of k � n basis vec-
tors which are linearly combined using the coefficients in
H to represent the data. Common approaches to achieve
such a factorization include Principal Component Analy-
sis (PCA) [Jolliffe, 1986], Singular Value Decomposition
(SVD) [Golub and van Loan, 1996], Vector Quantization
(VQ), or non-negative Matrix Factorization (NMF) [Lee
and Seung, 1999].

Various variants and improvements to NMF have been
introduced in recent years. For example, Cai et al. [2008]
presented a matrix factorization that obeys the geomet-
ric data structure. In [Kim and Park, 2008], a speed im-
provement to NMF is achieved using a novel algorithm
based on an alternating nonnegative least squares frame-
work. Another interesting variation is presented in [Suvrit,
2008] where optimization is based on a block-iterative ac-
celeration technique. Recently, Mairal et al. [2010] have
presented a very elegant online NMF approach based on
sparse coding that also scales to large matrices (for ad-
ditional related work, please see reference in [Mairal et
al., 2010]). In this work, however, we build on Convex-
NMF (C-NMF) recently introduced by Ding et. al [2009],
and it is not clear how to adapt these advanced NMF tech-
niques to it as Convex-NMF represents the data matrix V
as a convex combination of data points, i.e. V = VGHT

where each column i of G is a stochastic vector that obeys
‖gi‖1 = 1,gi ≥ 0 . This is akin to Archetypal Analysis ac-
cording to Cutler and Breiman [1994] where both matrices
G and HT are to be stochastic. Convex-NMF yields in-
teresting interpretations of the data because each data point
is now expressed as a weighted sum of certain data points
(see Fig. 1).

Convex NMF Convex non-negative matrix factorization
(C-NMF) was introduced by Ding et al. [2009] and min-
imizes J = ‖V − VGHT ‖2 , where V ∈ Rm×n,G ∈
Rn×k,H ∈ Rn×k. The matrices G and H are updated it-
eratively until convergence using the following update rules

Gik = Gik

√
(Y+H)ik + (Y−GHTH)ik
(Y−H)ik + (Y+GHTH)ik

(1)

and

Hik = Hik

√
(Y+G)ik + (HGTY−G)ik
(Y−G)ik + (HGTY+G)ik

(2)

where Y = VTV, and the matrices Y+ and Y− are given
by Y +

ik = 1
2 |Yik| + Yik and Y −ik = 1

2 |Yik| − Yik , respec-
tively.

For the initialization of G and H two methods are pro-
posed. The first initializes to (almost) unary representations
based on a k-means clustering of V. The second assumes
a given NMF or Semi-NMF solution. For further details on
the algorithm and its initializations we refer to [Ding et al.,
2009].

Recall, however, that our goal is to analyse massive,
high-dimensional datasets. Unfortunately, the C-NMF up-
date rules (1) and (2) have a time complexity of O(n2).
Moreover, although the iterative algorithm comes down
to simple matrix multiplications, the size of the involved
matrices quickly becomes another limiting factor (similar
to the intermediate blowup problem in tensor decomposi-
tion [Kolda and Sun, 2008]), since VTV results in an n×n
matrix. Switching to an online update rule would avoid
memory issues but it would at the same time introduce ad-
ditional computational overhead. Overall, we can say that
C-NMF does not scale to large datasets. In the following,
we will review Convex-Hull NMF (CH-NMF), which is a
recent C-NMF method that is well suited for for large-scale
data analysis.

Convex-Hull NMF Convex-Hull NMF aims at a data
factorization based on the data points residing on the data
convex hull. Such a data reconstruction has two interesting
properties: first, the basis vectors are real data points and
mark, unlike in most other clustering/factorization tech-
niques, the most extreme and not the most common data
points. Second, any data point can be expressed as a convex
and meaningful combination of these basis vectors. This



Algorithm 1: CH-NMF
Input: Data matrix Vm×n

Output: Matrices X and H
1 Compute k eigenvectors el, l = 1 . . . k of the covariance matrix of Vm×n;
2 Project V onto the 2D-subspaces E2×n

o,q = VT [eo, eq ], o = 1 . . . k,
q = 1 . . . k, o 6= q;

3 Compute and mark convex hull data pointsHcvx(Eo,q) for each 2D
projection;

4 Combine marked convex hull data points (using the original data
dimensionalitym) Sm×p = {Hcvx(E1,2), . . . , Hcvx(Ek−1,k)};

5 Optimize JS = ‖S− SIp×kJk×p‖2 such that ‖ii‖1 = 1 for ii ≥ 0 and
‖ji‖1 = 1 for ji ≥ 0;

6 Optimize J = ‖vi −XhT
i ‖

2 for i = 1 . . . n where X = Sm×pIp×k

such that ‖hi‖1 = 1 and hi ≥ 0;

offers interesting new opportunities for data interpretation
as indicated in Fig. 1 and demonstrated in [Thurau et al.,
2009].

More precisely, following Ding et al. [2009], one seeks
a factorization of the form V = VGHT , where V ∈
Rm×n,G ∈ Rn×k,H ∈ Rn×k. One further restricts the
columns of G and H to convexity, i.e., ‖gi‖1 = 1,gi ≥ 0
and ‖hj‖1 = 1,hj ≥ 0 . Indeed, Ding et al. [2009] also
consider convex combinations but not for the matrix H. In
other words, CH-NMF aims at factorizing the data such
that each data point is expressed as a convex combination
of convex combinations of specific data points. The task
now is to minimize

J = ‖V −VGHT ‖2 (3)

such that ‖gi‖1 = 1,gi ≥ 0 and ‖hj‖1 = 1,hj ≥ 0 . To
do so, one sets X = Vd×nGn×k . The intuition is as fol-
lows. Since we assume a convex combination for X, and
by definition of the convex hull, the convex hull Hcvx(V)
of V must contain X. Obviously, we could achieve a per-
fect reconstruction, giving J = 0, by setting G so that it
would contain exactly one entry equal to 1 for each con-
vex hull data point while all other entries were set to zero.
Or more informal: following the definition of the convex
hull we can perfectly reconstruct any data point by a con-
vex combination of convex hull data points. Therefore, our
goal becomes to solve Eq. (3) by finding k appropriate data
points on the convex hull:

J = ‖V −XHT ‖2 (4)

such that xi ∈ Hcvx(V), i = 1, . . . , k .
Finding a solution to Eq. (4), however, is not necessarily

straight forward. It is known that the worst case complex-
ity for computing the convex hull of n points in m dimen-
sions is Θ(n

m
2 ). Moreover, the number of convex hull data

points may tend to n for high dimensional spaces, see e.g.
[Donoho and Tanner, 2005; Hall et al., 2005] so that com-
puting the convex hull of large data-sets quickly becomes
practically infeasible. CH-NMF therefore seeks an approx-
imate solution by subsampling the convex hull. It exploits
the fact that any data point on the convex hull of a linear
lower dimensional projection of the data also resides on
the convex hull in the original data dimension. Since V
contains finitely many points and therefore forms a poly-
tope in Rm, we can resort to the main theorem of polytope
theory, see e.g. [Ziegler, 1995]. In our context, it says that
every vertex of an affine image of P , i.e., every point of
the convex hull of the image of P , corresponds to a vertex
of P . Therefore computing the convex hull of several 2D
affine projections of the data offers a way of subsampling
Hcvx(V). This is an efficient way as computing the con-

vex hull of a set of 2D points can be done in O(n log n)
time, [de Berg et al., 2000].

This subsampling strategy is the main idea underlying
CH-NMF and, indeed, various methods can be used for lin-
early projecting the data to a 2D space. Thurau et al. [2009]
proposed to use PCA, i.e., projecting the data using pair-
wise combinations of the first d eigenvectors of the covari-
ance matrix of V as summarized in Alg. 1. For massive,
high-dimensional data, however, computing the covariance
matrix may take a lot of time. Therefore, we propose to use
instead Faloutsos and Lin’s FastMap [1995], but please see
next section.

The main point here is, triggered by the idea that the ex-
pected size of the convex hull of n Gaussian data points in
the plane is Ω(

√
log n) [Hueter, 1999], CH-NMF extracts

only approximately p = j
√

log n candidate points. This
candidate set grows much slower than n. Given a candi-
date set of p convex hull data points S ∈ Hcvx(V), we
now select those k convex hull data points that yield the
best reconstruction of the remaining subset S. This, again,
can be formulated as a convex NMF optimization problem.
We now have to minimize the following reconstruction er-
ror

JS = ‖Sm×p − Sm×pIp×kJk×p‖2 (5)
under the convexity constraints ‖Ii‖1 = 1, Ii ≥ 0 and
‖Ji‖1 = 1,Ji ≥ 0 . Since p� n, solving (5) can be done
efficiently using a quadratic programming solver. Note that
the data dimensionality is m. The convex hull projection
only served to determine a candidate set; all further com-
putations are carried out in the original data space.

By obtaining a sufficient reconstruction accuracy for S,
we can set X = Sm×pIp×k and thereby select k convex
hull data points for solving Eq. (4). Typically, I results in
unary representations. If this is not the case, we simply
map SI to their nearest neighboring data point in S.

Given X, the computation of the coefficients H is
straight forward. For smaller data-sets it is possible to use
the iterative update rule from Eq. (2). However, since we
do not further modify the basis vectors X, we can also
find an optimal solution for each data point vi individu-
ally Ji = ‖vi −Xhi‖2 using common solvers. Obviously,
this can be parallelized.

3 Hierarchical CH-NMF
Modern datasets are not only massive, but often very com-
plex. This makes it challenging to find useful information
in the data. Fortunately, most datasets typically have a low
intrinsic dimension. That is, the data lay on a smooth,
structured low-dimensional manifold. As an illustrative
(already low-dimensional) example consider Fig. 2. It de-
picts a typical ”non-convex data” situation. We have drawn
data points from 10 randomly positioned Gaussians in 2D
and were interested in computing overcomplete represen-
tations, i.e., the number of basis vectors is greater than
the dimensionality of the input. Overcomplete represen-
tations have been advocated because they have greater ro-
bustness in the presence of noise, can be sparser, and can
have greater flexibility in matching structure in the data. By
design, CH-NMF assigns clusters to the ”extreme” Gaus-
sians and not to ”inner” Gaussians, cf. Figs. 2 (a,c). Al-
though we can still reconstruct each data point perfectly,
this is discouraging. The intrinsic (low dimensional) struc-
ture of the data is not captured and, in turn, the representa-
tion of the data found is not as meaningful as it could be.



(a) CH-NMF bv=4 (b) HCH-NMF bv=4 (c) CH-NMF bv=8 (d) HCH-NMF bv=8 (e) HCH-NMF bv=16

Figure 2: Resulting basis vectors of CH-NMF (a,c) for 4 resp. 8 basis vectors (bv) and of HCH-NMF (b,d,e) for 4, 8, resp.
16 basis vectors. The data samples are drawn from 10 randomly placed Gaussian distributions in 2D, 500 samples per
Gaussian. For 4 basis vectors (b), HCH-NMF essentially mimics CH-NMF. For more basis vectors (d,e), however, it starts
to adapt to the structure of the data: the basis vectors reside on the convex hulls of the Gaussians. CH-NMF’s basis vectors
(a,c), in contrast, remain residing on the convex hull. By design, it considers the ”extreme” Gaussians only and does not
adapt to the structure of the data. (Best viewed in color.)

Algorithm 2: HCH-NMF: Hierarchical Convex-Hull
NMF

Input: Data, i.e., the set of rows vi of Vm×n; the pairwise distances D; the
minimal size MinSize of a leave

Output: A hierarchical decomposition ofD represented as tree T
1 if |V| < MinSize then
2 return CH-NMF(Leaf) for l (even multiple of k) basis vectors
3 else
4 Rule←CHOOSERULE(V);
5 Vs ← {vi ∈ V | Rule(vi) = true};
6 Vf ← {vi ∈ V | Rule(vi) = false};
7 LeftTree←MAKETREE(Vs);
8 RightTree←MAKETREE(Vf );
9 return (Rule, LeftTree, RightTree)

Hierarchical convex-hull NMF (HCH-NMF) is a convex
NMF approach that automatically adapts to the low intrin-
sic dimensionality of data as illustrated in Figs. 2 (b,d,e).
The elegance of HCH-NMF stems from two facts:

• It naturally falls out of running CH-NMF using
FastMap [Faloutsos and Lin, 1995] for efficiently
computing and marking convex hull data points.

• In turn, it provably solves the convex NMF problem
as it directly makes CH-NMF manifold-adaptive.

The latter point is difficult to prove for a two-steps ap-
proach: run any clustering approach, then run CH-NMF
on the clusters. Also employing any of the existing large-
scale manifold learning methods, see e.g. [Talwalkar et al.,
2008] is difficult. As Talwakar et al. [2008], argue they re-
quire a O(n3) spectral decomposition of matrices where n
is the number of samples. When the matrix is sparse, these
techniques can be implemented relatively efficiently. How-
ever, when dealing with a large, dense matrix, the involved
matrix products become expensive to compute.

As summarized in Alg. 2, HCH-NMF is based on a hi-
erarchical decomposition of RD in form of a tree1. That
is, it starts with the empty tree and repeatedly searches for
the best test for a node according to some splitting criterion
such as weighted variance along the FastMap dimension.
Next, the examples V in the node are split into Vs (suc-
cess) and Vf (failure) according to the test. For each split,
the procedure is recursively applied, obtaining subtrees for

1In this paper, we follow Dasgupta and Freund’s random pro-
jection trees RPTs) [Dasgupta and Freund, 2009a]. We do not
split along a random direction but note that this could easily be
achieved.

the respective splits. We stop splitting if a minimum num-
ber MinSize of examples is reached or the variance in one
node is small enough. In the leaves, we run CH-NMF on
the examples falling into the leaves to find l basis vectors.
Finally, we may run a post-processing step to find the best
k basis vectors. In other words, HCH-NMF is conceptually
easy, yet scalable to massive datasets and powerful as our
experimental results will demonstrate.

Let us briefly review FastMap. FastMap computes a
u-dimensional Euclidean embedding and proceeds as fol-
lows. Given pairwise distances among objects, in our case
the rows of the data matrix V, we select a pair of distant
objects called pivot objects. Then, we draw a line between
the pivot objects. Essentially, it serves as the first coordi-
nate axis. For each object o, we determine the coordinate
value fm(o) along this axis by projecting o onto this line.
Next, the pairwise distances of all objects are updated to
reflect this projection, i.e., we compute the pairwise dis-
tances among the objects in the subspace orthogonal to the
line. This process is repeated until, after u iterations, we
get the u coordinates as well as the u-dimensional repre-
sentation of all objects. Ostrouchov and Samatova [2005]
have shown that the pivots are taken from the faces, usually
vertices, of the convex hull of the data points in the original
implicit Euclidean space. This justifies the idea to employ
FastMap in step (3) ”compute and mark convex hull data
points” of CH-NMF as already mentioned in the last sec-
tion. More important for HCH-NMF, it suggests a natural
splitting criterion to produce a hierarchical decomposition:
Split the data according to the weighted variance along the
1D FastMap line. More precisely, we compute the splitting
rule as summarized in Alg. 3. Essentially, we run one iter-
ation of FastMap and split along the “FastMap” line w.r.t.
weighted variance. That is, we pick a pair of distant ob-
jects x and y (lines 1-3). Then, we project the data onto
the line and compute for each data point its 1D coordinate
value (lines 4-6). Now, we compute the split variable θ that
minimizes the weighted variance (lines 8-12) and return the
corresponding splitting rule (lines 13-14). Thus, for each
splitting variable, determining the split point s can be done
very quickly. In turn, by scanning all of the inputs, deter-
mining the best split is feasible and scales as O(n log n).

How large should we grow the tree? Clearly, a very large
tree might produce too many basis vectors. The basis vec-
tors are likely to be not meaningful and the tree essentially
“overfits” the data. A small tree, however, might not cap-



Algorithm 3: CHOOSERULE based on FastMap
Input: Data, i.e., the set of rows vi of Vm×n; the minimal size of a leave

MinSize
Output: A splitting rule Rule for the data

1 Pick any data point t ∈ V;
2 Let x be the farthest point from t in V;
3 Let y be the farthest point from x in V;
4 for i = 1, 2, . . . n do
5 Project vi onto the line spanned by x and y;
6 Let fm(vi) be vi’s 1D coordinate value;
7 Sort the values fm(vi) generating the list s1 ≤ s2 ≤ . . . ≤ sn;
8 for i = 1, 2, . . . n do
9 µ1 = 1

i

∑i

j=1
sj ;

10 µ2 = 1
n−i

∑n

j=i+1
sj ;

11 ci =
∑i

j=1
(sj − µ1)

2 +
∑n

j=i+1
(sj − µ2)

2;

12 Find i that minimizes ci and set θ = (si + si+1)/2;
13 Rule(v) := fm(v) ≤ θ;

14 return (Rule)

ture the important structure in the data at all. Reconsider
standard CH-NMF. It corresponds to a tree of depth zero.
In other words, the tree size is a tuning parameter govern-
ing HCH-NMF’s complexity and one of its key advantages:
the diversified meaningfulness of its factorization. The pre-
ferred strategy, as for example explained in [Hastie et al.,
2001], proceeds as follows. We grow a large tree T0, stop
the splitting process only when some minimum leaf size,
say 200, is reached. Then, this tree is pruned in a post-
processing step. We omit a detailed algorithmic description
but rather briefly describe it now. The goal is to compute
k ≥ l many basis vectors that reconstruct the data the best.
We achieve this by successively merging neighboring leafs
until we get k basis vectors. In each step, we find the two
neighboring leafs that — if merged — produce the lowest
reconstruction error over the covered examples. As this can
be time consuming, we efficiently approximate it by always
selecting the two neighboring leaves with highest resulting
cluster accuracy when merging them.

In conclusion, HCH-NMF with a tree of depth 0 essen-
tially coincides with CH-NMF. Moreover, the well known
fact that if Z is any convex set that contains a convex hull
conv(U) of a set U , in particular Z = conv(U ∪ V ), then
conv(U) ⊆ Z, see e.g. [Boyd and Vandenberghe, 2004],
essentially proves the following correctness theorem.
Theorem 1 HCH-NMF solves the convex NMF problem.
It produces convex combinations of the data points in terms
of basis vectors that minimize (3) but reside on convex hulls
of clusters of data points.
Due to the hierarchical decomposition of the data, HCH-
NMF can adapt to the structure underlying the data as illus-
trated in Figs. 2 (b,d,e). Indeed, it is akin to k-means. Be-
cause k-means clustering is a NP-hard optimization prob-
lem, see e.g. [Dasgupta and Freund, 2009b], this suggests
that it is very unlikely that there exists an efficient algo-
rithm for it.

4 Experiments
Our intention here is to investigate whether HCH-NMF can
indeed find meaningful basis vectors in massive datasets
and how it compares to CH-NMF. To this aim, we im-
plemented both in Python using FastMap and the h5py
HDF5 interface to deal with massive data. For optimization
we used the cvxopt library by Dahl and Vandenberghe2.
(H)CH-NMF offers many opportunities for parallelization.

2http://abel.ee.ucla.edu/cvxopt/
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Figure 3: Boxplots of reconstruction errors (top) and com-
putation times [sec.] (bottom) (both in log-space) of HCH-
NMF and CH-NMF for varying numbers of synthetically
generated data averaged over five reruns. As mentioned
before, the Frobenius norm for CH-NMF has to be lower
as CH-NMF approximates the convex hull of the complete
data distribution and ignores the intrisic structure. Thus, for
the purpose of interpretation and diversity this is probably
not the right metric. (Best viewed in color.)

In the experiments, we only distributed the final recon-
structions equally among all available cores. All experi-
ments were ran on a standard Intel 3GHz computer with
two cores. We report running times only for comparison of
CH-NMF and HCH-NMF. Clearly, a C/C++ implementa-
tion would run several orders of magnitude faster.

We conducted four different experiments. To compare
running time and reconstruction performance in a con-
trolled setup, we compared (H)CH-NMF on synthetically
generated data. Our main focus, however, are three addi-
tional experiments on massive real-world datasets, namely,
publication histories of 760, 000 DBLP authors, 1.4 mil-
lion activity profiles of guilds, and 4 million images of the
Tiny image data-set [Torralba et al., 2008]. For the sake of
a better visualization, we show small trees.

Synthetic Data: Along the lines of [Ding et al., 2009;
Thurau et al., 2009], we evaluated the mean reconstruction
error and run-time performance using a varying number of
data points sampled from three randomly positioned Gaus-
sians in 2D. As already shown in [Thurau et al., 2009], CH-
NMF outperforms C-NMF for larger numbers of samples:
it is several orders of magnitude faster while achieving
competitive reconstruction errors. Therefore, we only com-
pared HCH-NMF against CH-NMF. We varied the number
of sampled data points ranging from 100 to 5000 in steps
of 100. The maximum number of iterations for any numer-
ical optimization was 100. The number of basis vectors
was set to 12, i.e., we searched for overcomplete represen-
tations. The results averaged over 5 reruns are summarized
in Fig. 3. As one can see, HCH-NMF produces an overhead
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Figure 4: (Top) Clusters and corresponding basis vectors
(histograms) found by HCH-NMF on the DBLP dataset.
By describing the basis vectors, we gain an intuitively un-
derstandable description of academic careers: 97% of all
authors are best described by the typical phases of an aca-
demic career. Indeed, there are renown, extremely pro-
lific exceptions. Because the basis vectors are actual data
points, we can identify them as Papadimitriou and Reddy.
(Bottom) Clusters and corresponding basis vectors found
by HCH-NMF on the World of Warcraft R© dataset. (Best
viewed in color.)

in running time for smaller sample sizes. For larger sample
sizes, HCH-NMFs catches up. The reconstruction error is
slightly higher than for CH-NMF but still lower than for
k-means (as reported in [Thurau et al., 2009]). The higher
reconstruction error is due to the natur of convex hulls: any
point within the convex hull can perfectly reconstructed.
Hence, CH-NMF is a lower bound of HCH-NMF in terms
of reconstruction error.

Bibliographic Analysis based on DBLP: Bibliographic
databases such as DBLP3 are a rich source of information.
Here, we are interested in the question whether there are
common patterns in the development of academic careers.
To this aim, we extracted from DBLP the cumulative pub-
lication histograms of 757, 368 authors, cf. Fig. 4(Top).
A publication histogram consists of the number of publi-
cations listed in DBLP in her first year, second year, and
so on. We have cumulated the publications numbers of the
years. The longest histogram we found spanned 68 years.
To get equal length curves we filled missing years with 0.
Following [Aitchison, 1982], we use logarithmic histogram
values in our analysis. The idea is that the publication his-
togram of an author is a good descriptor for her activity and
also to some extend for her success (but of course has not
to imply impact/quality). A senior researcher, for example,
is likely to have contributed over several years but there are

3http://www.informatik.uni-trier.de/˜ley/
db/

exceptionally prolific authors. PhD students, on the other
hand, may not have published many papers. We expected
HCH-NMF to discover these variations. This was indeed
the case as shown in Fig. 4 (Top). The patterns found can
be summarized as ”the majority of authors fall into one of
the phases of a regular academic career (student, junior,
senior) but of course there are illustrious exceptions. It
took 1 hour to compute the model, i.e., growing the tree
and pruning it. CH-NMF took 45 minutes essentially yield-
ing the union of all shown basis vectors, hence, giving the
impression ”there is a Papadimitriou in all of us”.

Social Network World of Warcraft R©: This dataset
consists of recordings of the online appearance of char-
acters in the computer game World of Warcraft R©. It is
assumed that World of Warcraft R© has about 12 million
p(l)aying customers. The game takes place in a virtual me-
dieval fantasy environment. World of Warcraft R© is often
considered one large social platform which is used for chat-
ting, team-play, and gathering. Compared to well known
virtual worlds that mainly serve as chat platforms such as
Second-life R©4, World of Warcraft R© is probably the real
second life as it has a larger and more active (paying) user
base. Moreover, a whole industry is developing around
World of Warcraft R©. It is estimated that 400.000 people
world-wide are employed as gold-farmers, i.e. collecting
virtual goods for online games and selling them over the
Internet.

Players organize in groups, which are called guilds. Un-
like groups known from other social platforms, such as
Flickr, membership in a guild is exclusive. Obviously,
the selection of a guild influences with whom players fre-
quently interact. It also influences how successful play-
ers are in terms of game achievements. We assume that
the level distribution among a guild is a good descriptor
for its success and activity. For example, a guild of very
experienced level 80 characters has a higher chance for
achievements than a guild of level 10 players. Also, a
level histogram gives an indicator for player activity over
time. If players are continuously staying with a particular
guild, we expect an equally distributed level histogram, as
the characters are continuously increasing their level over
time. The data was crawled from the publicly accessi-
ble site www.warcraftrealms.com. We viewed each
character online appearance as a vote. Characters obser-
vations span a period of 4 years. Every time a character is
seen online, he votes for the guild he is a member of accord-
ing to his level. We accumulate the votes into a level-guild
histogram, going from level 10 (level 1-9 are excluded) to
level 80 (the highest possible level). Players advance in
level by engaging in the game, i.e. completing quests or
other heroic deeds. Following [Aitchison, 1982], we use
logarithmic histogram values in our analysis. In total, we
collected 150 million votes of 18 million characters belong-
ing to 1.4 million guilds.

Running HCH-NMF took about 2.5 hours and revealed
some very interesting patterns as shown in Fig. 4 (Bottom).
As for CH-NMF, see [Thurau et al., 2009], we can also spot
singular events, in our case large updates to the game con-
tent (this is a regular procedure that makes novel content
available and also allows a further advancement in charac-
ter level). Apparently, large updates to the game can re-
sult in a restructuring of social groups. More interestingly,
HCH-NMF allows us to descriptions of clusters. For in-
stance, 90% of the data can be described in terms of just

4http://secondlife.com/
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Figure 5: (Top) HCH-NMF tree as well as the pivot
and split elements for the first split on the World of
Warcraft R© dataset. The ”90%” cluster in Fig. 4 captures
the data ”between” the split element and the ”right” pivot
element. Thus, the majority of guilds is actually close to the
”low constant activity” or ”seldom activity” guilds. Both
patterns are well captured by combining the corresponding
four basis vectors in Fig. 4. (Bottom) HCH-NMF’s split
elements for the 4 million tiny images are natural images.
(Best viewed in color.)

four basis vectors: ”formed early then slowly disbanded
till 1st update”, ”improving till 1st update”, ”very active
with 1st update”, and ”Boosted activity with 1st update”.
That was surprising. We knew that most guilds are rather
seldom active, see [Thurau et al., 2009]. Therefore, we
”zoomed” into the model, a feature of HCH-NMF not sup-
ported by CH-NMF. Specifically, we had a look at the pivot
and split elements of the first level of the induced tree, see
Fig. 5 (Top). This revealed that most of the 90% are ac-
tually ”seldom active”: they lay between the ”constantly
active till 2nd update” and ”seldom active” guild on the
FastMap line. The four basis vectors of the 90% cluster
together are archetypical guilds to reconstruct this pattern.
Running CH-NMF took about 2 hours and produced es-
sentially the same basis vectors. The major difference was
that it used the ”seldom active” guild directly and did not
factorize it.

Massive Image Collection: Our final experiment ap-
plies HCH-NMF to a subset of 4 million images of Tor-
ralba et al.’s 80 million tiny images [Torralba et al., 2008].
The images are represented as 384 dimensional GIST fea-
ture vector. The result of running HCH-NMF is shown in
Fig. 6. As already reported in [Thurau et al., 2009], some
of the basis vectors discovered show a geometric similarity
to Walsh filters that are found among the principal com-
ponents of natural images [Heidemann, 2006]. This sug-
gests that the extremal points in this large collection of nat-
ural images are located close to the principal axes of the
data. On the other hand, the split elements as shown in
Fig. 5 (Bottom,) are mostly ”realistic” images. This sug-
gests that they are located in the center of the data/clusters.
In contrast to CH-NMF, HCH-NMF grouped the basis vec-
tors into meaningful clusters. From left to right, the ba-

sis vectors, i.e., the columns, capture different aspects of
the images such as dark-light-dark, horizontal-cross/circle-
vertical, complex-plain-complex. Overall, running HCH-
NMF took only 23 hours and 37 minutes. This is remark-
able as we used an external USB hard disk and the running
time can be considerably reduced using an internal hard
disk and implementing HCH-NMF fully in C/C++.

5 Conclusion
We have introduced hierarchical convex-hull NMF. It seeks
to leverage convex NMF by automatically adapting to the
geometric structure of the data. It is fast and straightfor-
ward to implement, provably solves the convex NMF prob-
lem, combines the interpretability of both convex NMF
as well as hierarchical decomposition methods, and scales
well to massive, high-dimensional datasets. These contri-
butions advance the understanding of descriptive analytics
of massive, high-dimensional datasets and is an encourag-
ing sign that applying NMF techniques in the wild, i.e., on
hundreds of millions of data points may not be insurmount-
able.

There are several interesting avenues for future work.
One is the application of HCH-NMF to other challenging
datasets, such as Wikipedia, Netflix, Facebook, or the blog-
sphere, and to use it for applications such as collaborative
filtering. For the latter case, it is interesting to develop bot-
tom up HCH-NMF variants and to investigate the missing
values case. Another important avenue is parallelization.
HCH-NMF suggests a natural data-driven parallelization:
the training set is partitioned into subsets associated with
separate processors. Finally, HCH-NMF is highly rele-
vant for high-dimensional classification problems. Here,
it is infeasible to include enough training samples to cover
the class regions densely. As Cevikalp et al. [2008] have
recently pointed out, irregularities in the resulting sparse
sample distributions cause local classifiers such as near-
est neighbors and kernel methods to have irregular decision
boundaries. One solution is to ”fill in the holes” by build-
ing a convex model of the regions spanned by the training
samples. Using HCH-NMF, we even take the geometric
structure of each class into account.
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