
Lifted Conditioning for Pairwise Marginals and Beyond ∗

Babak Ahmadi and Kristian Kersting and Fabian Hadiji
Knowledge Dicovery Department, Fraunhofer IAIS

53754 Sankt Augustin, Germany
firstname.lastname@iais.fraunhofer.de

Abstract
Lifted belief propagation (LBP) can be extremely
fast at computing approximate marginal prob-
ability distributions over single variables and
neighboring ones in the underlying graphical
model. It does, however, not prescribe a way to
compute joint distributions over pairs, triples or
k-tuples of distant random variables. In this pa-
per, we present an algorithm, called conditioned
LBP, for approximating these distributions. Es-
sentially, we select variables one at a time for
conditioning, running lifted belief propagation
after each selection. This naive solution, how-
ever, recomputes the lifted network in each step
from scratch, therefore often canceling the ben-
efits of lifted inference. We show how to avoid
this by efficiently computing the lifted network
for each conditioning directly from the one al-
ready known for the single node marginals. This
contribution advances the theoretical understand-
ing of lifted inference but also allows one to ef-
ficiently solve many important AI tasks such as
finding the MAP assignment, sequential forward
sampling, parameter estimation, active learning,
sensitivity analysis, to name only few. Our ex-
perimental results validate that significant effi-
ciency gains are possible and illustrate the po-
tential for second-order parameter estimation of
Markov logic networks.

1 Introduction
There has been much recent interest in methods for per-
forming lifted probabilistic inference, handling whole sets
of indistinguishable objects together. Poole [2003], Braz et
al. [2005], and Milch et al. [2008] have developed lifted
versions of the variable elimination algorithm. Sen et
al. [2009] presented a lifted variable elimination approach
based on bisimulation. Most of these lifted inference ap-
proaches are extremely complex, so far do not easily scale
to realistic domains and hence have only been applied
to rather small artificial problems. A remarkable excep-
tion are lifted versions of belief propagation [Singla and
Domingos, 2008; Kersting et al., 2009]. Similar to Sen
et al.’s approach, They grouped together random variables
that have identical computation trees but now run a mod-
ified belief propagation (BP) on the resulting lifted, i.e.,
clustered network. Being instances of BP, they can be ex-
tremely fast at computing approximate marginal probabil-

∗This paper also appeared in PGM 2010

ity distributions over single variable nodes and neighboring
ones in the underlying graphical model. Above all, they
naturally scale to realistic domain sizes. Despite their suc-
cess, however, lifted BP approaches do not provide a pre-
scription to compute joint probabilities over pairs of non-
neighboring variables in the graph. When the underlying
graphical model is a tree, there is a single chain connect-
ing any two nodes, and dynamic programming techniques
might be developed for efficiently integrating out the inter-
nal variables. When cycles exist, however, it is not clear
what approximate procedure is appropriate. The situation
is even more frustrating when computing marginals over
triples or k-tuples of distant nodes. As for the non-lifted
case, sophisticated exact lifted inference algorithms are
only tractable on rather small models and do not scale to re-
alistic domain sizes. It is precisely this problem that we are
addressing in this paper, that is we are interested in approx-
imate lifted inference algorithms based on the conditioning
idea that scale to realistic domain sizes. Specifically, we
present conditioned LBP (CLBP), a scalable lifted infer-
ence algorithm for approximate inference based on condi-
tioning. Essentially, we select variables one at a time for
conditioning and run lifted belief propagation after each
selection. This naive solution, however, recomputes the
lifted network in each step from scratch, therefore often
canceling the benefits of lifted inference. We show how
to avoid this by efficiently computing the lifted network
for each conditioning directly from the one already known
for the single node marginals. There has been some prior
work for related problems. Delcher et al. [1996] propose
a data structure that allows efficient queries when new ev-
idence is incorporated in singly connected Bayesian net-
works and Acar et al. [2008] present an algorithm to adapt
the model to structural changes using an extension of Rake-
and-Compress Trees. The only lifted inference approach
we are aware of is the work by Nath and Domingos [2010]
that was independently developed in parallel. The au-
thors essentially simulate their lifting procedure for a set
of changed variables, obtaining the adapted lifted network.

We also consider the problem of determining the best
variable to condition on in each iteration to stay maxi-
mally lifted over all iterations and propose a simple heuris-
tic. Our experimental evaluation including experiments on
second-order parameter estimation for Markov logic net-
works [Richardson and Domingos, 2006] shows that sig-
nificant efficiency gains are obtainable compared to naively
running (lifted) BP in each iteration. CLBP may also have
future applications in more advanced relational learning
tasks such as active learning.

We proceed as follows. We start off by briefly reviewing
LBP. Then, we introduce CLBP, prove its soundness, and

X
1 X

2 X
3

f
1

f
2

X
1

X
2

f
1

X
2

X
3

f
2

… X
n+1

f
n

X
n

X
n+1

f
n

X
1

X
2

f
1

True True 1.2

True False 1.4

False True 2.0

False False 0.4

X
2

X
3

f
2

True True 1.2

True False 1.4

False True 2.0

False False 0.4

…

X
n

X
n+1

f
n

True True 1.2

True False 1.4

False True 2.0

False False 0.4

Figure 1: An example for a factor graph — a chain graph
model with n+ 1 nodes — with associated potentials. Cir-
cles denote variables, squares denote factors.

touch upon the problem of determining the best variable to
condition on at each level of recursion. Before concluding,
we present the results of our experimental evaluation.

2 Lifted Belief Propagation
Let X = (X1, X2, . . . , Xn) be a set of n discrete-valued
random variables each having d states, and let xi represent
the possible realizations of random variable Xi. Graphical
models compactly represent a joint distribution over X as
a product of factors [Pearl, 1991], i.e.,

P (X = x) = Z−1
∏

k
fk(xk) .

Each factor fk is a non-negative function of a subset of
the variables xk, and Z is a normalization constant. If
P (X = x) > 0 for all joint configurations x, the distribu-
tion can be equivalently represented as a log-linear model:

P (X = x) = Z−1 exp

[∑
i

wi · gi(x)

]
,

where the features gi(x) are arbitrary functions of (a subset
of) the configuration x.

Each graphical model can be represented as a factor
graph. A factor graph, cf. Fig 1, is a bipartite graph that
expresses the factorization structure of the joint distribu-
tion. It has a variable node (denoted as a circle) for each
variable Xi, a factor node (denoted as a square) for each
fk, with an edge connecting variable node i to factor node
k if and only if Xi is an argument of fk. We assume one
factor fi(x) = exp [wi · gi(x)] per feature gi(x).

An important (#P-complete) inference task is to compute
the conditional probability of variables given the values of
some others, the evidence, by summing out the remaining
variables. The belief propagation (BP) algorithm is an effi-
cient way to solve this problem that is exact when the fac-
tor graph is a tree, but only approximate when the factor
graph has cycles. Although this loopy BP has no guaran-
tees of convergence or of giving the correct result, in prac-
tice it often does, and can be much more efficient than other
methods. BP can be elegantly described in terms of send-
ing messages within a factor graph. The message from a
variable X to a factor f is

µX→f (x) =
∏

h∈nb(X)\{f}
µh→X(x)

where nb(X) is the set of factors X appears in. The mes-
sage from a factor to a variable is

µf→X(x) =
∑
¬{X}

f(x)
∏

Y ∈nb(f)\{X}

µY→f (y)



Xn Xn+1X1 Xn/2-1

Xn Xn+1X1 X2 Xn/2-1

X2

…

c

cc
Xn Xn+1X1 Xn/2-1X2

cc

Figure 2: Supernodes, indicated by the shades of the orig-
inal nodes, produced by repeatedly clamping nodes, indi-
cated by ”c”,on a chain graph model with n + 1 nodes.
Factors have been omitted here. The conditioning order is
π = {2, 1, 3, 4, . . . , n−2, n−1, n+1, n}. After clamping
X2 all subsequent LBP runs work on the fully grounded
network.

where nb(f) are the arguments of f , and the sum is over
all of these except X , denoted as ¬{X}. The messages are
usually initialized to 1, and the unnormalized belief of each
variable Xi can be computed from the equation

bi(xi) =
∏

f∈nb(Xi)
µf→Xi

(xi) .

Evidence is incorporated by setting f(x) = 0 for states x
that are incompatible with it. Different schedules may be
used for message-passing.

Although already quite efficient, many graphical mod-
els produce factor graphs with a lot of symmetries not re-
flected in the graphical structure. Consider the factor graph
in Fig. 1. Although the factors involved are different on the
surface, they actually share quite a lot of information, since
the associated potentials are identical. Lifted BP (LBP) can
make use of this fact. It essentially performs two steps:
Given a factor graph G, it first computes a compressed fac-
tor graph G and then runs a modified BP on G. We use
fraktur letters such as G, X, and f to denote the lifted, i.e.,
compressed graphs, nodes, and factors.

Step 1 of LBP — Lifting by Color-Passing (CP): LetG
be a given factor graph with variable and factor nodes. Ini-
tially, all variable nodes fall into d+ 1 groups (one or more
of these may be empty) — known states s1, . . . , sd, and
unknown — represented by colors. All factor nodes with
the same associated potentials also fall into one group rep-
resented by a color. Now, each variable node sends a mes-
sage to its neighboring factor nodes saying “I am of color
C”. A factor node sorts the incoming colors into a vector
according to the order the variables appear in its arguments.
The last entry of the vector is the factor node’s own color.
This color signature is sent back to the neighboring vari-
ables nodes, essentially saying “You have communicated
with these kinds of nodes”. The variable nodes stack the
incoming signatures together and, hence, form unique sig-
natures of their one-step message history. Variable nodes
with the same stacked signatures are grouped together, and
a new color is assigned to each group. The factors are
grouped in a similar fashion based on the incoming color
signatures of neighboring nodes. This CP process is iter-
ated until no new colors are created anymore. As the effect
of the evidence propagates through the factor graph, more
groups are created. The final lifted graph G is constructed
by grouping nodes with the same color (signatures) into su-
pernodes and all factors with the same color signatures into

superfactors. Supernodes (superfactors) are sets of nodes
(factors) that send and receive the same messages at each
step of carrying out BP and form a partition of the nodes
in G. On this lifted network, LBP runs an efficient modi-
fied BP (MBP). We refer to [Singla and Domingos, 2008;
Kersting et al., 2009] for details.

(Step 2) Modified BP (MBP) on the Lifted Graph:
The basic idea is to simulate BP carried out on G on G. 1

An edge from a superfactor f to a supernode Xi in G es-
sentially represents multiple edges in G. Let c(f,Xi) be
the number of identical messages that would be sent from
the factors in the superfactor f to each node in the supern-
ode Xi if BP was carried out on G. The message from a
supervariable X to a superfactor f is µX→f(x) =

µf→X(x)c(f,X)−1 ·
∏

h∈nb(X)\{f}
µh→X(x)c(h,X)

where nb(X) now denotes the neighbor relation in the lifted
graph G. The c(f,X) − 1 exponent reflects the fact that a
subervariable’s message to a superfactor excludes the cor-
responding factor’s message to the variable if BP was car-
ried out on G. Finally, the unnormalized belief of Xi, i.e.,
of any node X in Xi can be computed from the equation

bi(xi) =
∏

f∈nb(Xi)
µf→Xi

(xi)
c(f,X) .

Evidence is incorporated as in standard BP. by setting
f(x) = 0 for states x that are incompatible with it.

3 Lifted Conditioning
We are often faced with the problem of repeatedly
answering slightly modified queries on the same net-
work. Consider e.g. computing a joint distribution
P (X1, X2, . . . , Xk) using LBP. A simple method is the
following conditioning procedure that we call conditioned
LBP (CLBP). Let π define a conditioning order on the
nodes, i.e., a permutation on the set {1, 2, . . . , k} and its
i-th element be denoted as π(i). The simplest one is
π(i) = i. Now, we select variables one at a time for condi-
tioning, running LBP after each selection, and combine the
resulting marginals. More precisely,

1. Run LBP to compute the prior distribution P (Xπ(1)).
2. Clamp Xπ(1) to a specific state xπ(1). Run LBP to

compute the conditional distribution P (Xπ(2)|xπ(1)).
3. Do this for all states of Xπ(1) to obtain all condi-

tional distributions P (Xπ(2)|Xπ(1)). The joint distri-
bution is now P (Xπ(2), Xπ(1)) = P (Xπ(2)|Xπ(1)) ·
P (Xπ(1)).

By iterating steps 2) and 3) and employing the chain
rule we have P (X1, . . . , Xk) = P (Xπ(1), . . . , Xπ(k)) =∏k
i=1 P (Xπ(i)|Xπ(i−1), . . . , Xπ(1)) . CLBP is simple and

even exact for tree-structured models. Indeed, it is common
to apply (L)BP to graphs with cycles as well. In this case
the beliefs will in general not equal the true marginals, but
often provide good approximations in practice. Moreover,
Welling and Teh [2003] report that conditioning performs
surprisingly well in terms of accuracy for estimating the co-
variance2. In the lifted case, however, the naive solution of

1For the sake of simplicity, we present simplified equations
that neglect the positions a supernode may appear in a superfactor.

2The symmetrized estimate of the covariance matrix is typi-
cally not positive semi-definite and marginals computed from the
joint distributions are often inconsistent with each other.

repeatedly calling LBP may perform poorly in terms of run-
ning time. We are repeatedly answering slightly modified
queries on the same graph. Because LBP generally lacks
the opportunity of adaptively changing the lifted graph and
using the updated lifted graph for efficient inference, it is
doomed to lift the original model in each iteration again
from scratch. Each CP run scales O(n ·m) where n is the
number of nodes and m is the length of the longest path
without loop. Hence, CLBP essentially spendsO(k ·n ·m)
time just on lifting. Moreover, in contrast to the proposi-
tional case, the conditioning order has an effect on the sizes
of the lifted networks produced and, hence, the running
time of MBP. It may even cancel out the benefit of lifted in-
ference. Reconsider our chain example3. Figure 2 sketches
the lifted networks produced over time when using the con-
ditioning order π = {2, 1, 3, 4, . . . , n− 2, n− 1, n+ 1, n}.
That is, we clamp X2, then all other nodes but Xn in as-
cending order. As one can see, clampingX2 dooms all sub-
sequent iterations to run MBP on the fully grounded net-
work, canceling the benefits of lifted inference. In contrast,
the order π = {1, n+ 1, 2, n, . . . , n/2− 1} produces lifted
and fully grounded networks alternatingly, the best we can
achieve for chain models. We now address both issues.

Shortest-Paths Lifting: Consider the situation depicted
in Fig. 3. Given the network in (A) and the prior lifted net-
work, i.e., the lifted network when no evidence has been
set (B), we want to compute P (X|x3) as shown in (C).
To do so, it is useful to describe BP in terms of its com-
putation tree (CT), see e.g. [Ihler et al., 2005]. The CT
is the unrolling of the (loopy) graph structure where each
level i corresponds to the i-th iteration of message pass-
ing. Similarly we can view CP, i.e., the lifting procedure
as a colored computation tree (CCT). More precisely, one
considers for every node X the computation tree rooted in
X but now each node in the tree is colored according to
the nodes’ initial colors, cf. Fig. 3(bottom). Each CCT
encodes the root nodes’ local communication patterns that
show all the colored paths along which node X communi-
cates in the network. Consequently, CP groups nodes with
respect to their CCTs: nodes having the same set of rooted
paths of colors (node and factor names neglected) are clus-
tered together. For instance, Fig. 3(A) shows the CCTs for
X3 and X5. Because their set of paths are different, X3

and X5 are clustered into different supernodes as shown in
Fig. 3(B). The prior lifted network can be encoded as the
vector l = (0, 0, 1, 1, 0, 0) of node colors. Now, when we
clamp a node, sayX3, to a value x3, we change the commu-
nication pattern of every node having a path to X . Specif-
ically, we change X3’s (and only X3’s) color in all CCTs
X3 is involved. This is illustrated in Fig. 3(B). For the prior
lifted network, the dark and light nodes in Fig. 3(B) exhibit
the same communication pattern in the network. Conse-
quently,X3 appears at the same positions in all correspond-
ing CCTs. When we now incorporate evidence on nodeX3,
we change its color in all CCTs as indicated by the ”c” in
Figs. 3(B) and (C). This effects nodes X1 and X2 differ-
ently than X4 respectively X5 and X6 for two reasons: (1)
they have different communication patterns as they belong
to different supernodes in the prior network; more impor-
tantly, (2) they have different paths connecting them to X3

3When the graph is a chain or a tree there is a single chain con-
necting any two nodes and LBP together with dynamic program-
ming can be used to efficiently integrate out the internal variables.
When cycles exist, however, it is unclear what approximate pro-
cedure is appropriate.

X5

X4

X6

X2X1

X3

X1

X3

X2

X5

X6

X4

X3

X4

X1

X6

X5

X2

(B) Lifted model - no evidence

Examples of colored computation trees

(A) Originial factor graph

X1

X3

X2

X5

X6

X4

(C) Lifted model - evidence

X1

X3

X2

X5

X6

X4

X5

X4

X6

X2X1

X3

X5

X4

X6

X2X1

X3
c

X1

X3

X2

X6X5

X4

c X3

X4

c

(D) Shortest Path Distances

X1 X2 X3 X4 X6 X6

X1 0 2 1 2 3 3
X2 2 0 1 2 3 3
X3 1 1 0 1 2 2
X4 2 2 1 0 1 1
X5 3 3 2 1 0 1
X6 3 3 2 1 1 0

X5
X6

X2X1

Figure 3: (A): Original factor graph. (B): Prior lifted network, i.e., lifted factor graph with no evidence. (C): Lifted factor
graph when X3 is set to some evidence. Factor graphs are shown (top) with corresponding colored computation trees
(bottom). For the sake of simplicity, we assume identical factors (omitted here). Ovals denote variables/nodes. The shades
in (B) and (C) encode the supernodes. (D): Shortest-path distances of the nodes. The i-th row will be denoted di.

in their CCTs. The shortest path is the shortest sequence of
factor colors connecting two nodes. Since we are not inter-
ested in the paths but whether the paths are identical or not,
these sets might as well be represented as colors. Note that
in Fig. 3 we assume identical factors for simplicity. Thus
in this case path colors reduce to distances. In the general
case, however, we compare the paths, i.e. the sequence of
factor colors.
We only have to consider the vector d3 of shortest-paths
distances to X3, cf. Fig. 3(D), and refine the initial supern-
odes correspondingly. Recall that the prior lifted network
can be encoded as the vector l = (0, 0, 1, 1, 0, 0) of node
colors. This is equivalent to (1) l ⊕ d3, the element-wise
concatenation of two vectors, and (2) viewing each result-
ing number as a new color.

(0, 0, 1, 1, 0, 0)⊕ (1, 1, 0, 1, 2, 2)

=(1) (01, 01, 10, 11, 02, 02)

=(2) (0, 0, 1, 2, 3, 3),

the lifted network for P (X|x3) as shown in Fig. 3(C).
Thus, we can directly update the prior lifted network in
linear time without taking the detour through running CP
on the ground network. Now, let us compute the lifted net-
work for P (X|x4, x3). Essentially, we proceed as before:
compute l ⊕ (d3 ⊕ d4). However, the resulting network
might be suboptimal. It assumes x3 6= x4 and, hence, X3

and X4 cannot be in the same supernode. For x4 = x3,
they could be placed in the same supernode, if they are
in the same supernode in the prior network. This can be
checked by d3 � d4, the element-wise sort of two vectors.
In our case, this yields l ⊕ (d3 � d4) = l ⊕ l = l: the prior
lifted network. In general, we compute l⊕ (

⊕
s(
⊕

v ds,v))
where ds,v =

⊙
i∈s:xi=v

di , s and v are the supernodes
and the truth value respectively. For an arbitrary network,
however, the shortest paths might be identical although the
nodes have to be split, i.e. they differ in a longer path, or
in other words, the shortest paths of other nodes to the ev-
idence node are different. Consequently we iteratively ap-
ply the shortest paths lifting. Let SNS denote the supern-
odes given the set S as evidence. By applying the short-

est path procedure we compute SN{X1} from SN∅. This
step might cause initial supernodes to be split into newly
formed supernodes. To incorporate these changes in the
network structure the shortest paths lifting procedure has
to be iteratively applied. Thus in the next step we com-
pute SN{X1}∪ΓX1

from SN{X1}, where ΓX1
denotes the

changed supernodes of the previous step. This procedure
is iteratively applied until no new supernodes are created.
This essentially sketches the proof of the following theo-
rem.

Theorem 1. If the shortest-path colors among all nodes
and the prior lifted network are given, computing the lifted
network for P (X|Xi, . . . , X1), i > 0, takes O(i · n · s),
where n is the number of nodes, s is the number of supern-
odes. Running MBP produces the same results as running
BP on the original model.

Proof. For a GraphG = (V,E), when we set new evidence
for a node X ∈ V then for all nodes within the network the
color of node X in the CCTs is changed. If two nodes
Y1, Y2 ∈ V were initially clustered together (denoted as
sn0(Y1) = sn0(Y2)), i.e. they belong to the same supern-
ode, they have to be split if the CCTs differ. Now we
have to consider two cases: If the difference in the CCTs
is in the shortest path connecting X with Y1 and Y2, re-
spectively, then shortest-path lifting directly provides the
new clustering. If the coloring along the shortest paths
is identical the nodes’ CCTs might change in a longer
path. Since sn0(Y1) = sn0(Y2) there exists a mapping
between the paths of the respective CCTs. In particular
∃Z1, Z2, s.t. sn0(Z1) = sn0(Z2) from a different supern-
ode, i.e. sn0(Zi) 6= sn0(Yi), and Y1, . . . , Z1, . . . , X︸ ︷︷ ︸

∆1

∈

CCT (Y1), Y1, . . . , Z2, . . . , X︸ ︷︷ ︸
∆2

∈ CCT (Y2) and ∆1 ∈

CCT (Z1) 6= ∆2 ∈ CCT (Z2) are the respective shortest
paths for Z1 and Z2. Thus, by iteratively applying shortest-
path lifting as explained above, the evidence propagates
through and we obtain the new clustering.

 0

 5

 10

 15

 20

 25

 0 100 200 300 400 500 600

T
o
ta

l
M

e
s
s
a
g
e
s
 (

m
ill

io
n
s
)

Variables

BP
LBP

CLBP

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

 7e-05

 8e-05

 9e-05

 0.0001

 0 50 100 150 200 250

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n

Variables

BP

LBP

CLBP

Figure 4: Pairwise Probability Estimates: (Left) Comparison of the total number of messages sent for BP, Lifted BP and
”min-split” order CLBP for ”Friends-and-Smokers” MLNs (including clustering messages for LBP and CLBP). (Right)
The Standard Deviation of the error compared to the exact solution computed using the Junction Tree Algorithm.

On Finding a Conditioning Order: Clearly, CLBP will
be most efficient for estimating the probability of a joint
state when it produces the smallest lifted networks. This
calls for the task of finding the most efficient4 conditioning
order. Here, we provide a generically applicable strategy
based on the nodes’ shortest-path colors to all other nodes.
That is, in each conditioning iteration, we add that node
having the smallest number of unique paths to all other
nodes and, if possible, is a member of a supernode of one
of the already clamped nodes. Intuitively, we select nodes
that are expected to create the smallest number of splits of
existing supernodes in each iteration. Therefore, we call it
min-split. Although this increases the running time — each
conditioning iteration now has an additionalO(n2) step —
our experiments show that there are important cases such
as computing pairwise joint marginals where the efficiency
gains achievable due to a better lifting can compensate this
overhead.

4 Experimental Evaluation
Our intention here is to illustrate the performance of CLBP
compared to naively running LBP and BP. We implemented
CLBP and its variants in Python and using LIBDAI li-
brary [Mooij, 2009] and evaluated the algorithms on a num-
ber of Markov logic networks.

In our first experiment, we compared CLBP to naively
running LBP, i.e. lifting the network each time from
scratch, and BP for computing pairwise probabilities. We
generated the ”Friends-and-Smokers” Markov logic net-
work [Singla and Domingos, 2008] with 2, 5, 10, 15, 20,
and 25 people, resulting in networks ranging from 8 to 675
nodes. The shortest-path lifting clearly pays out in terms
of the total messages sent (including CP and shortest-path
messages) as shown in Fig. 4 (left). Moreover, the accu-
racy estimates are surprisingly good and confirm Welling
and Teh [2003]; Fig. 4 (right) shows the Standard Devia-
tion of the difference compared to the exact solution com-
puted using the Junction Tree (JT). The maximal error we
got was below 10−4. Note, however, that running JT with

4This question is different from the more common question
of finding highly accurate orders. The latter question is an ac-
tive research area already for the ground case see e.g. [Eaton and
Ghahramani, 2009], and is also related to the difficult question of
convergent BP variants, see e.g. [Mooij et al., 2007].

more than 20 persons was impossible due to memory and
time restrictions.

In our second experiment we investigated CLBP for
computing joint marginals. For the ”Friends-and-Smokers”
MLN with 20 people we randomly chose 1, 2, . . ., 10 ”can-
cer” and ”friends” nodes as query nodes. The joint state
was randomly chosen. The results are averaged over 10
runs. Fig. 5 shows the cumulative number of messages (in-
cluding CP messages). ”Min-split” is indeed better. By
chosing the order following our heuristic the cumulative
number of supernodes and in turn messages is reduced
compared to a random elimination order.

Finally, we learnt paramters for the ”Friends-and-
Smokers” MLN with 10 perople, maximizing the condi-
tional marginal log-likelihood (CMLL). Therefore we sam-
pled 5 data cases from the joint distribution. We com-
pared conjugate gradient (CG) optimization using Polak-
Ribiere with Newton conjugate gradient (NCG) optimiza-
tion using the covariance matrix of MLN clauses com-
puted using CLBP. The gradient was computed as de-
scribed in [Richardson and Domingos, 2006] but normal-
ized by the number of groundings of each clause. The re-
sults summarized in Fig. 6 confirm that information about
dependencies among clauses is indeed useful: the second
order method exhibits faster convergence.

5 Conclusion
We presented conditioned lifted BP, the first approach
for computing arbitrary joint marginals using lifted BP.
It relates conditioning to computing shortest-paths. Ex-
ploiting this link in order to establish runtime bounds is an
interesting avenue for future work. By combining lifted
BP and variable conditioning, it can readily be applied
to models of realistic domain size. As our results show
significant efficiency gains are obtainable, sometimes
order of magnitude, compared to naively running (lifted)
BP in each iteration. An interesting avenue for future
work is to apply CLBP within important AI tasks such as
finding the MAP assignment, sequential forward sampling,
and structure learning. Furthermore, our results suggest
to develop lifted cutset conditioning algorithms, see
e.g. [Bidyuk and Dechter, 2007], and to lift Eaton and
Ghahrmani’s [2009] fast heuristic for selecting nodes to be
clamped to improve CLBP’s accuracy.

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7 8 9 10

M

es
sa

ge
s

(t
ho

us
an

ds
)

Query Variables

BP
random

min-split

Figure 5: Number messages sent for computing joint
marginals of varying size for BP, ”random” and ”min-
split” order CLBP.

-320

-300

-280

-260

-240

-220

-200

-180

-160

 0 5 10 15 20 25 30 35 40

C
M

LL

Iteration

CG
NCG

Figure 6: Learning curves for ”Friends-and-Smokers”
MLN. Optimization using clause covariances shows
faster convergence.

Acknowledgements. This work was supported by
the Fraunhofer ATTRACT fellowship STREAM and by
the European Commission under contract number FP7-
248258-First-MM.

References
[Acar et al., 2008] U. A. Acar, A. T. Ihler, R. R. Mettu,

and Ö. Sümer. Adaptive inference on general graphical
models. In Proc. of the Conf. on Uncertainty in Artificial
Intelligence (UAI-08), 2008.

[Bidyuk and Dechter, 2007] B. Bidyuk and R. Dechter.
Cutset sampling for bayesian networks. Journal of Arti-
ficial Intelligence Research, 28, 2007.

[de Salvo Braz et al., 2005] R. de Salvo Braz, E. Amir,
and D. Roth. Lifted First Order Probabilistic Infer-
ence. In Proc. of the 19th International Joint Conference
on Artificial Intelligence (IJCAI-05), pages 1319–1325,
2005.

[Delcher et al., 1996] A. L. Delcher, A. J. Grove, S. Kasif,
and J. Pearl. Logarithmic-time updates and queries in
probabilistic networks. JAIR, 4:37–59, 1996.

[Eaton and Ghahramani, 2009] F. Eaton and Z. Ghahra-
mani. Choosing a variable to clamp: Approximate in-
ference using conditioned belief propagation. In Proc.
of the 12th International Conference on Artificial Intel-
ligence and Statistics (AIStats-09), 2009.

[Ihler et al., 2005] A.T. Ihler, J.W. Fisher III, and A.S.
Willsky. Loopy belief propagation: Convergence and
effects of message errors. Journal of Machine Learning
Research, 6:905–936, 2005.

[Kersting et al., 2009] K. Kersting, B. Ahmadi, and
S. Natarajan. Counting belief propagation. In J. Bilmes
A. Ng, editor, Proceedings of the 25th Conference on
Uncertainty in Artificial Intelligence (UAI–09), Mon-
treal, Canada, June 18–21 2009.

[Milch et al., 2008] B. Milch, L. Zettlemoyer, K. Kersting,
M. Haimes, and L. Pack Kaelbling. Lifted Probabilis-
tic Inference with Counting Formulas. In Proc. of the
23rd AAAI Conf. on Artificial Intelligence (AAAI-08),
July 13-17 2008.

[Mooij et al., 2007] J. Mooij, B. Wemmenhove, H. Kap-
pen, and T. Rizzo. Loop corrected belief propagation.

In Proc. of the 11th International Conference on Artifi-
cial Intelligence and Statistics (AIStats-09), 2007.

[Mooij, 2009] Joris M. Mooij. libDAI 0.2.3: A free/open
source C++ library for Discrete Approximate Inference.
http://www.libdai.org/, 2009.

[Murphy et al., 1999] K.P. Murphy, Y. Weiss, and M.I.
Jordan. Loopy Belief Propagation for Approximate In-
ference: An Empirical Study. In Proc. of the Conf.
on Uncertainty in Artificial Intelligence (UAI-99), pages
467–475, 1999.

[Nath and Domingos, 2010] A. Nath and P. Domingos. Ef-
ficient lifting for online probabilistic inference. In Pro-
ceedings of the Twenty-Fourth AAAI Conference on Ar-
tificial Intelligence (AAAI-10), 2010.

[Park, 2002] J.D. Park. MAP complexity results and ap-
proximation methods. In Proc. of the Conf. on Un-
certainty in Artificial Intelligence (UAI-02), pages 388–
396, 2002.

[Pearl, 1991] J. Pearl. Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann, 2.
edition, 1991.

[Poole, 2003] D. Poole. First-Order Probabilistic Infer-
ence. In Proc. of the 18th International Joint Confer-
ence on Artificial Intelligence (IJCAI-05), pages 985–
991, 2003.

[Richardson and Domingos, 2006] M. Richardson and
P. Domingos. Markov Logic Networks. Machine
Learning Journal, 62:107–136, 2006.

[Sen et al., 2009] P. Sen, A. Deshpande, and L. Getoor.
Bisimulation-based approximate lifted inference. In
J. Bilmes A. Ng, editor, Proceedings of the 25th Confer-
ence on Uncertainty in Artificial Intelligence (UAI–09),
Montreal, Canada, June 18–21 2009.

[Singla and Domingos, 2008] P. Singla and P. Domingos.
Lifted First-Order Belief Propagation. In Proc. of the
23rd AAAI Conf. on Artificial Intelligence (AAAI-08),
pages 1094–1099, July 13-17 2008.

[Welling and Teh, 2003] M. Welling and Y.W. Teh. Linear
response for approximate inference. In Proc. of NIPS-
03, pages 191–199, 2003.

