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Abstract
Finding relevant subspaces in very high-
dimensional data is a challenging task not only
for microarray data. The selection of features
must be stable, but on the other hand learning
performance is to be increased. Ensemble meth-
ods have succeeded in the increase of stability
and classification accuracy, but their runtime
prevents them from scaling up to real-world
applications. We propose two methods which
enhance correlation-based feature selection such
that the stability of feature selection comes with
little or even no extra runtime. We show the
efficiency of the algorithms analytically and
empirically on a wide range of datasets.

1 Introduction
The growing dimensionality of recorded data, especially in
bioinformatics, demands dimension reduction methods that
identify small sets of features leading to a better learning
performance. Along with the high dimensionality comes
a high variance, which makes it hard to find adequate fea-
ture subsets without being kept in local optima. The large
number of features challenges the runtime of the selection
algorithms. Hence, the main criteria for its quality are that
the algorithm is a) multivariate, takes into account feature
correlations, b) stable, does not vary much for unseen data
of the population; c) amending learning, the learning per-
formance is enhanced; d) fast: it scales well for very large
numbers of features. Ensemble methods decrease variance
and, hence, are frequently used in feature selection. How-
ever, they usually slow down the procedure. This paper
presents a method that speeds up ensembles in a simple
and effective way. A careful evaluation on 9 data sets in-
vestigates the quality of our new methods.

2 Related Work
Fast univariate filter approaches like the t-test [Fox and
Dimmic, 2006] or SAM-statistics [Tusher et al., 2001]
compute a scoring function on the features, disregarding
feature interplay. Wrapper approaches [Kohavi and John,
1997] better solve this problem, at the cost of much longer
runtime. Each feature set evaluation demands a cross-
validated training of the used learning algorithm. Some
learning algorithms provide the user with an implicit fea-
ture ranking which can easily be exploited for feature se-
lection. Such embedded approaches are using the weight
vector of a linear SVM [Vapnik, 1998] or the frequency
of feature use of a Random Forest (RF) [Breiman, 2001].

They are aware of feature interplay and faster than wrap-
pers but biased towards the learning algorithm used.

A group of new algorithms has come up to bridge the gap
between fast but univariate filters on the one hand, and slow
but multivariate wrappers on the other hand. Their goal is
to find a subset of features which is highly predictive with
no or a minimum of redundant information. The correla-
tion based feature selection (CFS) [Hall, 2000] performs
a sequential forward search with a correlation measure in
the evaluation step. CFS iteratively adds the feature which
has the best ratio between predictive relevance of the fea-
ture and its correlation with the already selected features.
Both, predictiveness and correlation, are measured by the
entropy-based symmetrical uncertainty where the informa-
tion gain IG of feature fi w.r.t. feature fj is divided by the
sum of the entropies of fi, fj . Since CFS uses symmetrical
uncertainty, it is only suitable for discrete values.

Ding and Peng [Ding and Peng, 2005] reinvented CFS
with the capability for handling numerical variables calling
it minimum redundancy maximum relevance FS (MRMR).
For numerical features the F-test is used. For a continuous
feature x and a nominal class variable y, both from a data
set with n examples and C classes, defined as

F (X,Y ) =

(n− C)
∑
c
nc(X̄c − X̄)

(C − 1)
∑
c
(nc − 1)σ2

c

(1)

with class-pooled variance σc and i ∈ {1, .., n}, nc the
number of examples in class c, c ∈ {1, .., C}. The redun-
dancy of a numerical feature set is measured by the abso-
lute value of Pearson’s correlation coefficient

R(X,Y ) =
Cov(X,Y )√

V ar(X) · V ar(Y )
(2)

with i ∈ {1, .., n}. It detects a linear dependency between
x and y. Another possible measure for the dependency be-
tween two nominal variables used by MRMR [Ding and
Peng, 2005] is the mutual information

MI(X,Y ) =
∑
i,j

P (xi, yj) log2
P (xi, yj)

P (xi)P (yj)
(3)

xi and yj are the possible values (alphabet) of X and Y .
From now on, we will use the term correlation and the

symbol Cor(x, y) as a synonym for either Pearsons’s lin-
ear correlation eq. (2), F-test eq. (1) or mutual information
eq. (3). The correlation measures are averaged over all
combinations of the feature set. Instead of the ratio, one
can also use the difference between relevance and redun-
dancy [Ding and Peng, 2005]. In any case, the measures



are based on variance and, hence, are sensitive to outliers
and a high variance of the input data, alike. This instability
is not suitable, e.g., for biomedical research, where the rel-
evance of features is in the research focus. The main algo-
rithmic issue is the computation of the correlations. In the
first step, selecting the most relevant feature takes p calcu-
lations of Cor(xi, y). The next steps in MRMR/CFS are to
repeatedly add the feature which has the best ratio between
relevance and redundancy to the already selected features.

Fj+1 = Fj ∪ {argmax
f∈F\Fj

Cor(f, y)
1
j

∑
g∈Fj

Cor(f, g)
} (4)

This takes p − (j − 1) correlations in each step. For the
whole MRMR/CFS process of selecting k from p features

p+

k−1∑
i=1

(p− i) = p · k − k2 − k

2
(5)

correlations must be computed. Variants of the method
like, e.g., [Gulgezen et al., 2009] tried to improve the sta-
bility of MRMR by introducing a weighting parameter α
for the ratio of relevance and redundancy. Tuning this pa-
rameter even increases the overall runtime. The same holds
for the approach [Michalak and Kwaśnicka, 2006], which
evaluates together those pairs of features which are higher
correlated than some δ, or for Fast Correlation-based Fil-
ter (FCBF) [Yu and Liu, 2004], which discards all features
with relevance < δ. Hence, MRMR/CFS is promising but
suffering from a lack of stability.

Ensemble methods
A high variance negatively effects prediction algorithms
(classification & regression) as well as feature selection
schemes. Ensemble methods like Bagging [Breiman, 1996]
or Boosting [Freund and Schapire, 1997] reduce vari-
ance. Parallel ensembles, e.g. Bagging, do so by re-
peating the algorithm on different subsamples or boot-
strapped samples of the input data. This increases the sta-
bility of the set of selected features [Saeys et al., 2008;
Jurman et al., 2008] and - in some cases - even reduces
the prediction error [Xu and Zhang, 2006]. Saeys et al.
[Saeys et al., 2008] showed that (bagged) ensembles of
symmetrical uncertainty weighting, Relief, SVM-RFE or
RF delivered more stable feature selections than the non-
ensembled counterparts, but did not increase classification
performance. (For RF accuracy even decreased.) The ma-
jor problem with Bagging are the e-times repetition for en-
sembles of cardinality e. This increases runtime consider-
ably.

3 Speeding up Ensembles
We now have advantages and shortcomings of the methods
which we want to enhance, namely MRMR/CFS (being un-
stable) and ensemble methods (being too slow). The basis
for our algorithm is the ”split-sum trick” going back to the
displacement law of statistics, the latter of which we apply
first. It helps to compute the Cor(x, y) in one pass for any
two features. Thanks to the displacement law, cf. (6), the
measures (1) to (3) can be rewritten as sums of independent
terms. We use Pearson’s linear correlation as an example,
but the other measures can be split analogously: Since the
variance of a variable X can be written as

V ar(X) = E((X − E(X))2) = E(X2)− (E(X))2 (6)
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Figure 1: Inner Ensemble: Splitting correlation computa-
tion into parts: the e = 5 parts calculate the correlations
on the data subsets marked gray. The average of Cor1 to
Cor5 becomes RobustCor.

the variance- and covariance-terms now only contain sums
of computationally independent terms. Pearson’s linear
correlation can be computed in only one pass over the data
for each feature without prior computation of the mean val-
ues of each feature. Eq. (1) and (3) can similarly be split
into sums of independent terms. This fact is used by our
Inner Ensemble method and its further enhancement, the
Fast Ensemble.

Inner Ensembles
Correlation measures like Pearson’s linear correlation are
very sensitive to outliers [Koh et al., 2007]. This has a neg-
ative effect on the stability of the selected feature set. Our
first method, the Inner Ensembles, increases the robustness
of the correlation measure by performing a parallel ensem-
ble of e correlations, instead. The correlation is calculated
for e parts on subsets of the examples, each part leaving
out 1

e of the data - similar to e-fold cross-validation. In
contrast to cross-validation, the left-out fraction of the data
is not used, at all. The average of the e correlations gives
us a more robust correlation estimate. (cf. Fig. 1).

Let Fj denote the set of selected features in step j ∈
{1..k} of MRMR/CFS. The MRMR/CFS algorithm first
picks the feature which has the highest correlation with the
label and so is most relevant. This takes p calculations of
feature-label-correlation F1 = {argmaxfi (Cor(fi, y))}
with i ∈ [1, p]. Usually, for ensembles of size e, this
would increase runtime of MRMR/CFS by the factor e to
e · p · k − (k2 − k)/2) correlations to compute. Now, we
use that the eqs. (1), (2) and (3) can all be split into sums
of sums like

n∑
i=1

hi =

m1∑
i=1

hi +

m2∑
i=m1+1

hi + · · ·+
n∑

i=me+1

hi (7)

=
e∑

j=1

 j n
e∑

i=1+(j−1)n
e

hi

 (8)

for equally sized parts and arbitrary terms hi. This
allows us to compute these sums for all e intervalls[
(j − 1)ne + 1, j n

e

]
separately. The final correlation of

each part i ∈ [1, e] of the ensemble is then calculated by
using all but the ith partial sums. There is virtually no ex-
tra runtime apart from e times adding up the partial sums
within Algorithm 1. The memory need increases by factor
e which is very small, because Pearson’s linear correlation
only needs five accumulator variables for the sums; F-test
and mutual information only need 1+3·|f1| and 3·|f1|·|f2|
variables, respectively, where |f1| and |f2| are the number
of distinct values of the features f1 and f2. Algorithm 1
examplarily shows pseudo-code for Pearsons’s linear cor-
relation returning the correlation values for all parts in one



pass over the data. For F-Test (1) and MI (3) the procedure
is similar.

Algorithm 1 Pearson Correlation Ensemble

1: Input: Numerical variables X,Y , ensemble size e,
number of examples n

2: Init arrays of size e for split-sums:
Cor[],e n[],e x[],e xx[],e y[],e yy[],e xy[]

3: Init overall sums: E X=0; E Y=0; E XY=0; E XX=0;
E YY=0

4: j=0; {index for the ensemble parts 1..e}
5: for i = 1 to N do {Iterate over all examples, build

overall & split-sums}
6: e x[j]+= X[i]; e y[j]+= Y[i]; e xy[j]+= X[i]*Y[i];

e xx[j]+= X[i]2; e yy[j]+= Y[i]2
7: E X+=X[i]; E Y+=Y[i]; E XY+=X[i]*Y[i];

E XX+=X[i]2; E YY+=Y[i]2
8: e n[j]++; j=(j+1) mod e;
9: end for

10: for j=1 to e do {Iterate over all ensemble parts: calcu-
late correlation}

11: denom=sqrt(abs((E XX-e xx[j]- (E X−e x[j])2

n−e n[j] ) ·

(E YY-e yy[j]- (E Y−e y[j])2

n−e n[j] )))
12: Cor[j]= (E XY-e xy[j]-E X·E Y

n−e n[j] ) / denom
13: end for
14: return “average” over Cor[]

Fast Ensembles
Doing the calculations on diverse subsets of the data and
using the split-sum trick in the Inner Ensembles way is ex-
tremely fast, but it increases the stability of selected feature
sets only marginally, when used on each single correlation
step, cf. Section 4. Our 2nd method, Fast Ensemble, builds
an ensemble of the whole selection process, instead of sta-
bilizing each single correlation. We dramatically reduce
runtime of the full ensemble by applying the same split-
sum trick.

If a correlation between two features is computed for one
part of the ensemble, their correlations can be computed
with practically no overhead for all other parts of the en-
semble (cf. Algorithm 1). As opposed to the Inner Ensem-
ble, here, the partial correlation results are not combined,
but cached for later use. Just one pass over the examples is
needed: For every ith part of the ensemble, the ith partial
sums are left out when aggregating the sums to a correlation
measure. Hence, for every two features or a feature-class
combination, only one pass over the examples is needed,
no matter in how many parts of the ensemble they appear.
Where a full ensemble of MRMR/CFS needs e · p passes
over the examples in order to select a first feature fi,1 for e
parts of the ensemble, our method does this just once. For
every further feature fi,j in all parts of the ensemble, only
those feature correlations need a pass over the examples
which were not already considered in any other part of the
ensemble.

Time-complexity directly depends on the diversity of the
ensemble results. If all parts of the ensemble return the
same feature set, the needed correlations have all been com-
puted in the first part and the runtime is the same as for a
single feature selection. If, in contrast, the resulting fea-
ture sets of the feature selections are disjoint, none of the
feature pairs has been considered in other parts of the en-

Algorithm 2 Fast Ensemble of MRMR/CFS
1: Input: Set of all features F, desired dimension k, size

of the ensemble e, label y
2: for i = 1 to e do {For all parts of the ensemble}
3: Fi = {fi,1 ∈ F |max Cor(fi,1, y)[i]}
4: for j=2 to k do {Iteratively add best feature}
5: Fi = Fi ∪ {fi,j ∈ F\Fi | max (Cor(fi,j ,y)[i] /∑

g∈Fi

Cor(fi,j , g)[i])}

6: end for
7: end for
8: return “average” over all Fi

9: Cor(a,b) first looks in cache. If measure for (a,b) or
(b,a) was not yet cached, chooses appropriate measure,
e.g. Alg. 1, and puts the resulting array into cache.

semble and thus has not been cached. These extremes are
rare.

A simple example of selecting 3 out of 5 features (X1 to
X5), label Y , illustrates Fast Ensembles, cf. Fig. 2. The
ensemble consists of three parts. After a first calculation
of the relevance of each feature, i.e. the correlation of Xi

and Y , the relevance values are cached for each part. To es-
timate the feature with the best relevance/redundancy ratio
the correlations of X2 and the remaining four features must
be computed. X4 is chosen. In the last step the remaining
features must be compared to the newly added X4. This
is repeated for all other parts. Now relevance can be com-
puted from the split sums already computed in the first part.
If Xi, Xj have been compared in an earlier part, their split-
sums can be reused. The resulting sets are then combined,
e.g. via majority vote. Only 15 passes are needed instead
of 36 without the split-sum trick.

Our algorithms conduct search in feature subset space
like wrappers do. Yet, unlike wrappers, the feature sets
are not evaluated in long cross-validation runs but with a
fast filter approach. Unlike filters, feature interdependen-
cies are still considered. Hence, Inner and Fast Ensembles
combine the advantages of wrapper and filter approaches.
Note, that the inherent parallelism of the algorithms speeds
up computation additionally. Every correlation computa-
tion between two features is independent of the other fea-
tures. Thus, not only the parts of the ensemble can be
computed in parallel, but also all correlation computations.
Only completed calculations must be reported to some cen-
tral instance which conducts the search in feature subset
space.

4 Evaluation
We evaluated the performance of our algorithm with re-
spect to stability, accuracy and runtime on nine publicly
available datasets of a wide range of problem settings and
dimensionality (Table 1). For high repeatability plugin,
experiments, material and additional plots and figures are
available at [SuppMat, 2010].

Stability
We analyze how the produced feature sets differ under vari-
ation of the input data. We compare our two methods Inner
Ensemble and Fast Ensemble to MRMR/CFS and a full en-
semble of MRMR/CFS. All ensembles consist of e = 20
parts. The stability of the full ensemble is only reported for
completeness as it technically does the same as our Fast
Ensemble.



Figure 2: Fast Ensemble: A simple example with k = 3, n = 5, e = 3. The dashed lines in the arrows represent the subset
of the examples which is left out when estimating the correlation. The correlation computations demanding a pass over the
data for split-sum calculation are highlighted.

DATASET p n CLASSES DATA k = 10 k = 20
SONAR 60 208 2 CONTINUOUS 0.0085 0.0025
IONOSPHERE 34 351 2 CONTINUOUS 0.022 0.19951
MUSK 166 476 2 CONTINUOUS 3.1 · 10−6 1.4 · 10−8

LUNG 325 73 7 NOMINAL 4.1 · 10−7 4.0 · 10−14

H.W. DIGITS 64 3823 10 CONTINUOUS 0.082 0.0058
COLON 2000 62 2 NOMINAL 1.4 · 10−9 1.1 · 10−6

LYMPHOMA 4026 96 9 NOMINAL 1.2 · 10−10 4.4 · 10−14

LEUKEMIA 7070 72 2 NOMINAL 2.6 · 10−11 1.9 · 10−15

NCI60 9712 60 9 NOMINAL 2.4 · 10−14 0.0

Table 1: Data chracteristics and
significance of the difference be-
tween the stabilities achieved by
Fast Ensemble and plain MRMR
for 10 and 20 features. Values
< 0.05 are highly significant.

We use the Jaccard index of two feature-sets

J(Fa, Fb) =
|Fa ∩ Fb|
|Fa ∪ Fb|

(9)

to measure the stability of the feature selection. Similar to
[Saeys et al., 2008] we draw ten subsets from the example
set like ten-fold cross-validation. On each of these subsets
a feature selection is computed. The overall stability is fur-
ther defined as the average of the Jaccard Indices for all
combinations of those feature selections:

J̄ =
2

l2 + l

l∑
i=1

l∑
j=i+1

J(Fi, Fj), (10)

where l is the number of different feature selections in the
ensemble. The average over 10 runs are reported. Fig. 3
shows exemplary results for the stability of the four feature
selection methods dependent on k, the number of features
to select; see [SuppMat, 2010] for complete results.

The Fast Ensemble version clearly outperforms the stan-
dard MRMR/CFS, whereas the Inner Ensemble shows
nearly no visible improvement except for the Leukemia
dataset in Fig. 3.3. For the Leukemia dataset the mutual in-
formation was used to measure relevance and redundancy.
One can see that the inner ensemble only effects nominal
datasets. As it increases runtime only in O(1) we suggest
using it for nominal datasets. As is clearly seen, our new
Fast Ensemble achieves the same performance as a full en-
semble of the same size. The benefit is the much smaller
number of computations. The visible differences from 3
between methods are significant. We examplarily report the

p-Values for 10 and 20 features in Table 1. The only excep-
tion in p-values is selecting 20 features from the ionosphere
dataset, but this corresponds to the curve in Fig. 3.1. For all
datasets stability increases with larger k because the (pos-
sible) overlap between subsets selected by different parts
of the ensemble increases. The effect of the size e of an
ensemble on the selection stability was also investigated,
cf. Fig. 4 and [SuppMat, 2010]. Too small an ensem-
ble does not increase performance and too large an ensem-
ble degrades performance for small n. Stability increases
with the number of selected features, but in general a mid-
sized ensemble with e ≈ 20 performs best for all k. We
also compared our split-sum based ensembles to classical
bagged ensembles of equal size. In 8 of 9 data sets Bagging
gave less stable results.

Accuracy
We analyze if a more stable feature selection benefits
classification accuracy on five different learning schemes:
Naı̈ve Bayes, 5-Nearest-Neighbors, RF, a linear SVM, and
Logistic Regression (LR) which all have different strenghts
and weaknesses. We compare the standard MRMR/CFS
approach (Plain) to our Inner Ensemble and our Fast En-
semble algorithm. Accuracy was averaged over 10 runs of
ten-fold cross-validation. SVM and LR were only applied
to two-class problems with continuous variables. Pairwise
comparisons of the feature selection methods summed up
over all experiments gave the following wins/ties/losses:

Fast Ensemble vs MRMR/CFS: 884 / 52 / 634
Inner Ensemble vs MRMR/CFS: 785 / 55 / 730
Fast Ensemble vs Inner Ensemble: 849 / 50 / 671
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Figure 3: Stability of the four approaches, MRMR/CFS, Inner Ensemble, Fast Ensemble, and the full ensemble measured
by the average Jaccard Index (y-axis), where k, the number of selected features is the x-axis. The Fast Ensemble clearly
dominates the single MRMR/CFS and and delivers the same results as a full ensemble. The Inner Ensemble only increases
stability for the Leukemia dataset. Plot for Lung can be found ind [SuppMat, 2010].
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Figure 4: Stability of the selected feature sets as a function of e (vertical axis) and k (horizontal axis). Brightness indicates
stability - the brighter the better.

Table 2 shows in more detail the effect of feature selec-
tion on classification accuracy for all datasets. Feature se-
lection was only performed on the training set and not on
the test set, as this would lead to far too optimistic results.
In 7 of the 9 datasets accuracy increased, when a subset
of the features was used for prediction instead of all fea-
tures. More detailed plots of and figures for all datasets
can be found in [SuppMat, 2010]. In general, results show
that Fast Ensembles deliver better results earlier (with less
features) than MRMR/CFS, Except for the Musk dataset,
where all feature selections degraded performance.

Runtime
Let us now compare the runtime of our new Fast Ensemble
with a standard ensemble of the same size. The overlap
(number of features which two sets have in common) can
be calculated based on their size k and their Jaccard index
as

ol(J̄ , k) = 2 · J̄ · k/(J̄ + 1). (11)

The average Jaccard index of the sets produced by the
parts of the ensemble is similar to the average Jaccard in-

DATASET 5NN NB RF SVM LR
SONAR 18/13/19 14/22/13 23/15/11 18/19/12 15/22/12
IONOSPHERE 18/4/11 17/7/10 19/4/10 20/11/2 18/9/6
MUSK 4/17/29 2/27/21 14/6/7 21/13/16 18/9/20
LUNG 23/11/15 21/16/12 16/15/19
H.W. DIGITS 37/7/6 27/8/14 17/19/14
COLON 23/14/13 16/20/10 8/22/18
LEUKEMIA 17/21/11 20/11/19 21/19/7
LYMPHOMA 32/6/11 43/5/2 44/2/2
NCI60 20/17/10 31/8/9 17/22/9

Table 2: Accuracy by the number of times a method was
superior to the others in the order Fast/Inner/Plain. k varied
between 1 and 50. Winner is set bold.

dex measured for Plain MRMR/CFS for inspecting stabil-
ity. Considering a Fast Ensemble of e parts we now sum
up the average amount of correlations in the parts of the
ensemble. In the first part of the ensemble, all p · k− k2−k

2
correlations must be computed. In the second part, there
are no correlations needed for relevance estimation, and for
the redundancy check, only those features, which have not
been added in the first part, must be correlated with the re-
maining k − ol(J̄ , k) features. At this point, it is unclear



whether these features are added at the end or at the begin-
ning of the selection process, i.e., whether the parts of the
ensemble differ at the end or the beginning of the selection
process. This determines how many features it is compared
to and explains the imprecision of the estimate.

For a rough estimate assume the average probability that
a feature f i in the ith part has already been correlated to all
other features in the part before is

Pk,J̄(f
i) =

i−1∑
m=1

ol(J̄ , k)

k
(1− Pk,J̄(f

m)) (12)

(13)

which reduces to

PJ̄(f
i) :=

2J̄

J̄ + 1

i−1∑
m=1

(1− PJ̄(f
m)) (14)

with PJ̄(f
1) = 0. As seen from eq. (5), in one part, there

are on average p−(k−1)/2 correlations to compute. When
multiplied with the probability of not needing to compute
the correlation and adding the initial relevance computation
this gives a total average runtime of

T (p, k, e, J̄) = (15)

= p+ (k − 1)

(
p− k − 1

2

)(
e−

e∑
i=1

PJ̄(f
i)

)
(16)

under the assumption f i
j = f i

l , ∀j, l ∈ [1, k].
To give an empirical validation of this average case run-

time estimation, Tables 3, 4 and 5 show the number of
correlations that must be computed depending on k and
e. We compare our approach with a standard ensemble of
MRMR/CFS of the same size. High variance and large p
can decrease the overlap between the ensemble parts, such
increasing runtime as it is this overlap which speeds up
runtime of our approach. It is not possible to predict in
which order features are selected in different parts of the
ensemble. This puts more variance to the number of needed
correlations and makes it harder to predict those numbers.
Nonetheless, eq. (15) seems to give a good estimate on the
average case of correlation computations.

5 Conclusion
We presented two new algorithms towards selecting a max-
imum relevant and minimum redundant feature set. Our
algorithms are more stable than the existing MRMR/CFS
approach and much faster than a standard ensemble of
MRMR/CFS. The speed-up is due to a faster computa-
tion of Cor(f, f ′) based on the displacement rule and due
to caching redundancy calculations from partitions. We
showed that our method is well suited for feature selection
on high-dimensional data as it is more robust against high
variance and outliers than the single version. For the choice
of e = 20 our algorithm is 1.4 to 19.7 times faster than a
usual ensemble of MRMR/CFS.

Our methods do not rely on Mutual Information, Pear-
son’s correlation, or the F-Test, alone. They can make
use of any measure of similarity which can be split into
sums. The split-sum-trick could also speed-up, e.g., Saeys’
bagged SU [Saeys et al., 2008], which builds upon MI,
when replacing Bagging by our subset splits.
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Table 3: Number of computed comparisons for a standard ensemble of MRMR/CFS, our Fast Ensemble method, the speed
gain and the estimated runtime. Figures for the Ionosphere, Lung and Sonar datasets. There are no figures for Ionosphere
for more than 30 features because this dataset only contains 34 features.

IONOSPHERE LUNG SONAR
k e FAST EST. STANDARD GAIN FAST EST. STANDARD GAIN FAST EST. STANDARD GAIN

10 5 405 504 1,475 3.64 12,505 11,578 16,025 1.28 927 1,186 2,775 2.99
20 5 567 587 2,450 4.32 20,844 17,548 31,550 1.51 1,235 1,638 5,050 4.09
30 5 594 641 2,925 4.92 26,410 19,937 46,575 1.76 1,577 1,738 6,825 4.33
40 5 29,322 22,228 61,100 2.08 1,694 1,915 8,100 4.78
50 5 32,472 23,920 75,125 2.31 1,815 1,985 8,875 4.89
10 10 424 511 2,950 6.96 16,929 17,342 32,050 1.89 1,010 1,261 5,550 5.50
20 10 550 587 4,900 8.91 24,055 20,831 63,100 2.62 1,235 1,653 10,100 8.18
30 10 595 641 5,850 9.83 29,539 21,087 93,150 3.15 1,577 1,738 13,650 8.66
40 10 31,239 22,716 122,200 3.91 1,710 1,915 16,200 9.47
50 10 33,274 24,107 150,250 4.52 1,815 1,985 17,750 9.78
10 20 424 511 5,900 13.92 22,099 21,807 64,100 2.90 884 1,267 11,100 12.56
20 20 540 587 9,800 18.15 27,550 21,576 126,200 4.58 1,269 1,653 20,200 15.92
30 20 595 641 11,700 19.66 30,820 21,158 186,300 6.04 1,577 1,738 27,300 17.31
40 20 32,269 22,727 244,400 7.57 1,725 1,915 32,400 18.78
50 20 33,669 24,109 300,500 8.93 1,815 1,985 35,500 19.56

Table 4: Number of computed comparisons for a standard ensemble of MRMR/CFS, our Fast Ensemble method, the speed
gain and the estimated runtime. Figures for the Musk, Colon and Handwritten Digits datasets.

MUSK COLON HW DIGITS
k e FAST EST. STANDARD GAIN FAST EST. STANDARD GAIN FAST EST. STANDARD GAIN

10 5 3,991 5,093 8,075 2.02 61,535 47,697 99,775 1.62 649 1,297 2,975 4.58
20 5 5,346 8,823 15,650 2.93 104,622 64,376 199,050 1.90 1,300 2,241 5,450 4.19
30 5 6,235 10,332 22,725 3.64 145,299 94,289 297,825 2.05 1,552 2,452 7,425 4.78
40 5 7,866 10,719 29,300 3.72 183,629 119,446 396,100 2.16 1,827 2,453 8,900 4.87
50 5 8,710 10,944 35,375 4.06 221,559 142,219 493,875 2.23 2,025 2,380 9,875 4.88
10 10 3,991 6,734 16,150 4.05 98,775 53,160 199,550 2.02 702 1,389 5,950 8.48
20 10 5,346 10,545 31,300 5.85 129,855 65,012 398,100 3.07 1,260 2,343 10,900 8.65
30 10 6,235 11,123 45,450 7.29 156,840 95,029 595,650 3.80 1,584 2,476 14,850 9.38
40 10 7,756 10,958 58,600 7.56 193,149 120,023 792,200 4.10 1,827 2,457 17,800 9.74
50 10 8,505 11,007 70,750 8.32 232,860 142,630 987,750 4.24 2,052 2,380 19,750 9.62
10 20 4,131 7,463 32,300 7.82 114,347 53,891 399,100 3.49 702 1,396 11,900 16.95
20 20 5,083 10,956 62,600 12.32 137,585 65,019 796,200 5.79 1,260 2,348 21,800 17.30
30 20 6,111 11,190 90,900 14.87 166,430 95,035 1,191,300 7.16 1,584 2,476 29,700 18.75
40 20 7,756 10,964 117,200 15.11 198,849 120,026 1,584,400 7.97 1,827 2,457 35,600 19.49
50 20 8,505 11,008 141,500 16.64 234,740 142,631 1,975,500 8.42 2,052 2,380 39,500 19.25

Table 5: Number of computed comparisons for a standard ensemble of MRMR/CFS, our Fast Ensemble method, the speed
gain and the estimated runtime. Figures for the Lymphoma, Leukemia and NCI60 datasets.

LYMPHOMA LEUKEMIA NCI60
k e FAST EST. STANDARD GAIN FAST EST. STANDARD GAIN FAST EST. STANDARD GAIN

10 5 176,198 170,514 201,075 1.14 267,957 214,363 353,275 1.32 416,713 354,883 485,375 1.16
20 5 354,398 349,559 401,650 1.13 464,475 325,976 706,050 1.52 860,452 768,263 970,250 1.13
30 5 526,680 488,337 601,725 1.14 667,185 414,636 1,058,325 1.59 1,244,592 1,064,589 1,454,625 1.17
40 5 677,766 590,451 801,300 1.18 834,309 506,060 1,410,100 1.69 1,598,497 1,289,449 1,938,500 1.21
50 5 800,598 694,083 1,000,375 1.25 952,340 597,310 1,761,375 1.85 1,960,542 1,522,741 2,421,875 1.24
10 10 314,973 305,016 402,150 1.28 471,479 275,841 706,550 1.50 754,533 539,036 970,750 1.29
20 10 623,705 617,372 803,300 1.29 681,134 354,470 1,412,100 2.07 1,369,093 1,222,147 1,940,500 1.42
30 10 865,436 787,610 1,203,450 1.39 876,000 429,598 2,116,650 2.42 1,884,442 1,548,606 2,909,250 1.54
40 10 1,065,723 859,902 1,602,600 1.50 1,007,784 516,370 2,820,200 2.80 2,292,727 1,718,300 3,877,000 1.69
50 10 1,218,735 955,178 2,000,750 1.64 1,125,390 605,302 3,522,750 3.13 2,651,998 1,939,365 4,843,750 1.83
10 20 565,565 501,460 804,300 1.42 590,394 299,482 1,413,100 2.39 1,177,483 689,700 1,941,500 1.65
20 20 1,024,385 985,833 1,606,600 1.57 827,357 357,243 2,824,200 3.41 2,226,388 1,656,234 3,881,000 1.74
30 20 1,296,456 1,086,820 2,406,900 1.86 987,000 430,168 4,233,300 4.29 2,802,838 1,872,590 5,818,500 2.08
40 20 1,487,010 1,040,597 3,205,200 2.16 1,111,569 516,588 5,640,400 5.07 3,272,563 1,910,171 7,754,000 2.37
50 20 1,631,750 1,091,347 4,001,500 2.45 1,242,707 605,412 7,045,500 5.67 3,515,832 2,085,675 9,687,500 2.76
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