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Abstract
We investigate orphan screening, the search for
small molecule ligands of proteins for which no
binding ligands are known in advance. Pre-
dicting interactions between biologically active
molecules is an important step towards effec-
tive drug discovery. We propose novel classifi-
cation and ranking algorithms for orphan screen-
ing which are based on counting feature combi-
nations in molecular fingerprints. For the train-
ing process we only use positive examples and
additional knowledge about the considered pro-
teins and ligands. This knowledge is available
in form of protein similarity values a database of
molecule compounds. Our algorithms have run-
time linear in the number of unlabelled examples.

1 Introduction
We aim at the prediction of ligands for orphan targets.
Ligands denote small molecules binding proteins, whereas
an orphan target is a protein or protein binding site for
which no example ligands are available for learning. More
generally, virtual screening denotes the in silico testing
of huge databases of molecules for predefined properties,
such as the activity against a target. Virtual screening is an
important tool to support laboratory testing for the search
of ligands. In particular, it is used to preselect promising
molecules from the typically very large databases of
synthesizable molecules in order to reduce the time and
money needed to develop a novel drug. In recent years,
machine learning techniques have been very successfully
adopted for virtual screening. Whether ligands for the
protein under consideration are available beforehand or
not, distinguishes the cases of practical relevance. For
traditional virtual screening some ligands of the protein
are given and others are sought. For orphan screening no
ligands of the protein are known and the task is to find
some. In the latter case, the protein is called an orphan
target.

Virtual screening can be modelled as a classification
problem. In contrast to approaches where one is inter-
ested in the intensity of the protein ligand bond, in the
classification setting we only want to find out whether a
small molecule binds a protein or not. Approaches like
the one described by Geppert et al. (2008) use support
vector machines for non-orphan screening. They employ
known ligands as positive training instances and a sample
of database molecules as negative training instances.

Building on these techniques, Jacob and Vert (2008)
try to improve predictive accuracy with a hypothesis that
targets several proteins at the same time. Additionally,
they carry their virtual screening method over to orphan
screening. In particular, they classify protein-ligand
pairs as follows: a pair is considered as positive training
instance if the ligand binds to the protein and as negative
one, otherwise. Later, a somewhat different technique
for both orphan and non-orphan screening was developed
by Geppert et al. (2009). There, the authors realize their
prediction via a combination of multiple hypotheses.
While Geppert et al. (2009) show that their approach is
more efficient, both approaches for orphan screening still
suffer from two drawbacks: On the one hand, the database
molecules, which in fact are molecules for which the
label is not known, are assumed to be negative training
instances. On the other hand, the amount of available
database molecules is huge but the time complexity of
these algorithms is cubic in the number of used database
molecules.

In this paper we develop a novel approach to virtual
screening that is (i) applicable to orphan screening,
(ii) does not assume database molecules to be negative
instances but models them as unlabelled instances, and
(iii) has time complexity linear in the number of database
molecules. Our approach is derived from the counting-
based structured output prediction algorithm proposed in
Gärtner and Vembu (2009). Their method works efficiently
if sums over features and pairs of features can be computed
in linear time. The term structured output refers to the
fact that the results of structured output algorithms are
more complex than just labels of natural or real numbers.
In our case the structured output will be a fingerprint, a
feature vector which represents a compound in a database
of molecules. Our aim is to adapt the method of Gärtner
and Vembu (2009) for the problem of ligand search, as
counting features in fingerprints is computationally easy
and may lead to good results in this setting. Actually, we
achieve the linear runtime complexity by precomputing the
sums of feature vectors and their inner products over the
database in linear time.

2 Preliminaries
Small molecules can be represented as bit vectors of zeros
and ones in Rd via molecular fingerprints. The developers
of these fingerprints assembled a set of d features in
order to display the molecules by means of their chemical
properties. Fingerprints have already been established as



standard tools in ligand prediction tasks.

Kernel methods are a popular class of learning algo-
rithms. They include techniques like the support vector
machine that are well-founded in learning theory and have
been applied in many real-world problems. They work by
applying a symmetric and positive semidefinite function
kX : X × X → R as a similarity measure for elements
of a space X . A function with these properties is also
called kernel function and is known to uniquely generate
a reproducing kernel Hilbert space HX of real-valued
functions defined on X (see Schölkopf et al. (2001)).
In recent years, kernel methods have been extended to
handle more complex – so-called structured – outputs.
For this purpose we want to learn a joint scoring function
f which is defined on the cross-product of two spaces
X and Y . The function f should assign a real score to
pairs (x, y) ∈ X × Y according to "how well x and y
fit". Applied to our situation, we want to find ligands for
proteins from a set X by screening a huge set of small
molecules stored in a database Y . A common choice,
which we will also adopt in this work, is to choose the
tensor product of the input and output reproducing kernel
Hilbert spaces H = HX ⊗ HY as hypothesis space for
the joint scoring function. The function space H has the
kernel k = kX ⊗ kY given by

k
(
(x, y), (x′, y′)

)
= kX (x, x′) · kY(y, y′),

for (x, y), (x′, y′) ∈ X × Y , where kX and kY are the
kernels of HX and HY , respectively. We will assume that
the feature mapping φ : Y → Rd is low dimensional and
given explicitly. This is indeed naturally the case for vir-
tual and orphan screening where we use fingerprint vectors
of length d as molecule representations. In practice, the
positive semidefinite kernel kX is calculated essentially as
a DNA sequence identity for two proteins and ranges from
0 to 100. Furthermore, we consider the inner product of
feature vectors as the kernel kY in the sense of

kY(y, y′) = 〈φ(y), φ(y′)〉,
for y, y′ ∈ Y .

3 The Method
In the sequel we propose new loss-functions adapted to the
problem of ligand prediction with a database of unlabelled
examples and few positive training instances. Concerning
the solution of the respective optimization problem we will
benefit from the properties of reproducing kernel Hilbert
spaces. In fact, our minimizer will turn out to be a linear
combination of kernel functions evaluated at the training
examples. In addition to orphan screening, our algorithm
can also be applied to virtual screening for non-orphan tar-
gets, i.e., the search for new ligands of proteins with a
few known ligands. The main algorithmic difference be-
tween both tasks is the utilization of positive training exam-
ples. For orphan screening we exploit ligand information of
other proteins and a similarity measure between those pro-
teins (used for training) and the orphan target. Contrary to
orphan screening, for virtual screening of non-orphan tar-
gets we may additionally use the information we already
have for the target in consideration.

3.1 Counting-Based Structured Output
Prediction

We are considering a set of proteins X and a database of
small molecules Y , where the latter contains the potential

ligands. In general, we are looking for a joint scoring func-
tion f : X × Y → R, which assigns a real value to every
pair (x, y) ∈ X × Y . This scoring value should be the
higher the better ligand y binds to protein x. The hypothe-
sis space for f shall be the reproducing kernel Hilbert space
H = HX ⊗HY with product kernel k = kX ⊗kY . Suppose
we have positive training examples

(x1,Y1), . . . , (xm,Ym) ∈ X × 2Y ,

i.e., a set Yi of known ligands for every protein xi ∈
{x1, . . . , xm} = Xtrain ⊆ X . Moreover, we assume the
availability of further knowledge about the candidate space
Y . For our algorithm this knowledge consists of a database
containing the elements of Y in form of feature vectors.
Note, that we do not consider the exponentially large set of
all possible molecule representations. With unlabelled ex-
amples we denote every possible combination (xi, z) such
that xi ∈ Xtrain and z ∈ Zi, with Zi := Y \ Yi. These
pairs are unlabelled examples as we do not know before-
hand whether z binds to xi or not. For orphan screening
the considered orphan target x̃ is an element of X \Xtrain,
while a non-orphan target is contained in Xtrain by con-
struction of the two different tasks. Finally, our goal is a
sorted list of the compounds in Y with respect to a certain
protein x̃. Therefore, we want to assign high values of the
scoring function f to positive examples and small values
to the probably negative unlabelled examples, respectively.
We will present different loss-functions which fulfill this
requirement (and depend on both positive and unlabelled
examples) in the next section. In principle, we want to
learn a function f∗ ∈ H which minimizes the regularized
risk functional

f∗ = argmin
f∈H

λ‖f‖2
H +

m∑
i=1

R(f, i) (1)

where R(·, i) is the loss-function for the i-th positive
training example. Since the quadratic function is strictly
monotonically increasing and the regularized risk term∑m

i=1 R(f, i) specified below is a function with inputs
(xi, y) and (xi, z) such that xi ∈ Xtrain, y ∈ Yi, and
z ∈ Zi, i = 1, . . . , m, we may apply the representer theo-
rem (Schölkopf et al., 2001). We obtain for our optimizer
f∗ that

f∗ ∈ F = span
{

kX (·, x) · kY(·, z) : x ∈ X , z ∈ Y
}

= span
{

kX (·, x) · 〈φ(·), φ(z)〉 : x ∈ X , z ∈ Y
}

,

where kX (·, ·) is the adequate protein similarity value, and
〈φ(·), φ(·)〉 is the inner product in the output space with
dimension d. Usually, Y is given as a huge database of in-
stances. For this reason we would like to scale down F .
In practice the dimension d of the feature space is often
much smaller than the number of elements in Y (e.g. fin-
gerprint maccs has d ≈ 160, while |Y| is usually greater
than 100.000). If we consider the canonical orthonormal



basis e1, . . . , ed of Rd, the transformation

F = span
{

kX (·, x) · 〈φ(·), φ(z)〉 : x ∈ Xtrain, z ∈ Y
}

= span
{

kX (·, x) · 〈φ(·),
∑d

l=1
βz

l el〉 :

x ∈ Xtrain, z ∈ Y, βz
l ∈ R

}
= span

{∑d

l=1
βz

l kX (·, x) · 〈φ(·), el〉 :

x ∈ Xtrain, z ∈ Y, βz
l ∈ R

}
shows that

f∗(x, y) =
m∑

i=1

d∑
l=1

αl,ikX (x, xi)〈φ(y), el〉 (2)

for appropriate coefficients αl,i ∈ R. Now we have to op-
timize f∗ over only m · d coefficients (instead of m · |Y|
coefficients as in the initial representation of F). We will
find the solution f∗ of (1) by minimizing with respect to
α ∈ Rd×m. Following, we propose new loss-functions for
ligand prediction which finally determines the optimization
problem (1) completely.

3.2 Loss-Functions for Orphan Screening
As mentioned above, we want to learn a function f that
maps positive examples to higher values than unlabelled
ones. For the associated optimization problem we present
different loss-functions and contrast them with each other.
The loss-functions are all based on quadratic loss (compare
Gärtner and Vembu (2009)). They vary in the treatment of
labelled and unlabelled examples, respectively.

Suppose we have a set Xtrain = {x1, . . . , xm} of
proteins and a database of molecules Y . Furthermore, for
every xi ∈ X we have a set Yi of already verified ligands
and the complement set of unlabelled database molecules
Zi with respect to xi. We will refer to (xi,Yi) as the i-th
training unit.

We propose to minimize the regularized risk functional
(1) with regularization constant λ > 0 and training units
1, . . . , m, for the following loss-functions R1, . . . ,R4

(ranking simple)
R1(f, i) =

∑
y∈Yi

∑
z∈Zi

[1 − fi(y) + fi(z)]2

(classification simple)
R2(f, i) =

∑
y∈Yi

[1 − fi(y)]2 + 1
|Zi|

∑
z∈Zi

[1 + fi(z)]2

(ranking mean)
R3(f, i) =

∑
y∈Yi

[
1 − fi(y) + 1

|Zi|
∑

z∈Zi

fi(z)
]2

(classification mean)
R4(f, i) =

∑
y∈Yi

[1 − fi(y)]2 +
[
1 + 1

|Zi|
∑

z∈Zi

fi(z)
]2

,

where fi(y) := f(xi, y).
The loss-functions R1, . . . ,R4 are categorized according
to their treatment of unlabelled examples (simple/mean)
and to their arrangement of examples via classification

or ranking (classification/ranking). The functions R2

and R4 push the positive and unlabelled examples for
every protein xi ∈ X to scores of +1 or −1, respectively.
In contrast, R1 and R3 rank ligands in an independent
fashion for every training example xi ∈ Xtrain. Another
qualitative differentiating feature is that R1 and R2 are
constructed such that every single unlabelled example
is ranked or classified. In contrast, R3 and R4 handle
unlabelled examples as a unit. Only the mean of their
values of f is supposed to be lower than the values of f for
positive examples. For our data setting we would expect
the classification mean approach to work best. We believe
this because, on the one hand, we have classification-type
data. On the other hand, it should be more appropriate
to pull the mean of the values of the scoring function
for unlabelled examples down. Actually, the unlabelled
examples contain ligands which, by construction, are
supposed to have high values of f .

An interesting property of the optimization problems
above is that they are equivalent to using the second
order Taylor approximation of the exponential loss. For
example, consider

minλ‖f‖2 +
m∑

i=1

∑
y∈Yi

∑
z∈Zi

[1 − fi(y) + fi(z)]2

and

minλ‖f‖2 +
m∑

i=1

∑
y∈Yi

∑
z∈Zi

exp[1 − fi(y) + fi(z)].

Both optimization problems are equivalent except for a re-
moval of multiplicative or additive constants resulting in a
shift of the objective function.
In the sequel we will sketch how to obtain compact formu-
las for all functions necessary for optimization.

3.3 Objective Function and Algorithm
In order to solve the optimization problem in (1), according
to the parameterization given by (2), we have to minimize
with respect to α ∈ Rd×m. Let us define the terms Y ∈
Rm×d, C ∈ Rd×d, and Φ ∈ Rd by

Yi· :=
∑
y∈Yi

φT (y) , C :=
∑
z∈Y

φ(z)φ(z)T , Φ :=
∑
z∈Y

φ(z),

the kernel matrix of protein similarities, [K]mi,j=1 :=
kX (xi, xj), and the vectors of constants

V := (|Y1|, . . . , |Ym|)T
,

W := (|Y| − 2|Y1|, . . . , |Y| − 2|Ym|)T
,

S :=
(

|Y1|
|Zi|2

, . . . ,
|Ym|
|Zm|2

)T

,

S :=
(

1
|Zi|2

, . . . ,
1

|Zm|2

)T

,

U :=
(
|Y1|
|Zi|

, . . . ,
|Ym|
|Zm|

)T

, U :=
(

1
|Zi|

, . . . ,
1

|Zm|

)T

.

As the definitions of C and Φ include counts of fingerprint
features or feature combinations in linear time, it becomes
clear why our method is called counting-based. These
constants can be computed in linear time by a single pass



over the database. With this constants we obtain a compact
formulation (independent of the size of the database) of
the objective functions o(α,R1), . . . , o(α,R4) with the
respective loss-functions R1, . . . ,R4

o(α,R1) = λ tr(αKαT ) − |Y| tr(Y αK) + V T KαT Φ

+
1
2

m∑
i=1

Wi(αK·i)T CYi(αK·i)

+
1
2
V T diag(KαT CαK)

− ΦT αK diag(Y αK) + ‖diag(Y αK)‖2

o(α,R2) = λ tr(αKαT ) − (1 + U)T diag(Y αK)

+ U
T
KαT Φ +

1
2
U

T
diag(KαT CαK)

+
1
2

m∑
i=1

(1 − U)i(αK·i)T CYi(αK·i)

o(α,R3) = λ tr(αKαT ) − (1 + U)T diag(Y αK)

+ UT KαT Φ +
1
2

m∑
i=1

(αK·i)T CYi(αK·i)

+
1
2
ΦT αK(S ◦ KαT Φ)

− ΦT αK((S + U) ◦ diag(Y αK))

+

∥∥∥∥∥
(√

1
2
S + U

)
◦ diag(Y αK)

∥∥∥∥∥
2

o(α,R4) = λ tr(αKαT ) − (1 + U)T diag(Y αK)

+ U
T
KαT Φ +

1
2

m∑
i=1

(αK·i)T CYi(αK·i)

+
1
2
ΦT αK(S ◦ KαT Φ)}

− ΦT αK(S ◦ diag(Y αK))

+

∥∥∥∥∥
(√

1
2
S

)
◦ diag(Y αK)

∥∥∥∥∥
2

.

With standard techniques we also obtained the gradient
of the objective function and the product of the Hessian
with a vector v ∈ Rd×m which we need for optimization.
Due to the positive semidefinite kernel matrix K and the
particular structure of the objective function, we deal with
a convex optimization problem. Hence, we can use the
Newton conjugate gradient method to obtain a solution for
our minimization problems.

Our ligand prediction algorithm works as follows for
a given target protein x: After learning the scoring func-
tion f we calculate the values f(x, z) for every database
molecule z ∈ Zx (note, orphan screening and virtual
screening for non-orphan targets only vary in the data
used for training). Afterwards, all those molecules are
sorted with respect to their score. The performance of
the algorithm can be measured by recovery rates, i.e.,
the number of actual ligands among the first s sorted
molecules (compare also Geppert et al., 2009), where s is
an appropriate threshold.

4 Conclusion and Future Work
In this paper we developed several counting-based struc-
tured output prediction algorithms for orphan screening
as well as traditional virtual screening. For that we
established four loss-functions evaluating the quality of a
scoring function f . The algorithms aim at an assignment of
scores to small molecules in a database according to how
good they bind a target protein, in particular, an orphan
target. The loss-functions are constructed such that: After
a sorting of the database with respect to the scoring values,
ligands of the target protein should be in the top positions
of the sorted list of molecules. Furthermore, the design
of the loss-functions shows our intention to model the
database molecules as unlabelled examples.

We will measure the accuracy of our approach in
real-world virtual as well as orphan screening settings.
Concretely, we want to test our four methods on a set of
proteins, each with a set of known ligands. Furthermore,
we plan to vary the algorithm. For example, we want
to include actual negative examples, insert an additional
variance term for the neutral examples, or invert input
and output space. Moreover, an important part of our
practical studies will be the comparison of our algorithm
with SVMStruct and baseline orphan screening methods.
In addition to the classification setting, we want to test
regression approaches.
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