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Abstract
Software repositories from open-source projects
provide a rich source of information for a wide
range of tasks. However, one issue to overcome
in order to make this information useful is the ac-
curate identification of developers. This is a par-
ticular challenge, as developers usually use dif-
ferent IDs in different repositories of one project,
but usually there is no kind of dictionary or sim-
ilar available to map the different IDs to real-
world persons. Often, they even use different
IDs in the same repository. We show that the
few methods suggested so far are not always ap-
propriate to overcome this problem. Further, we
highlight related techniques from other areas and
discuss how they can be applied in this context.
We particularly focus on the idea of applying
graph-based methods and argue for the benefits
we expect from that.

1 Motivation
In Software Engineering, many tools with underlying
repositories have been introduced to support the collabo-
ration of distributed software development. Research has
shown that these software repositories contain rich amount
of information about software projects. By mining the in-
formation contained in these software repositories, practi-
tioners can depend less on their experience and more on the
historical data [Hassan, 2008]. However, software reposi-
tories are commonly used only as record-keeping repos-
itories and rarely for design decision processes [Diehl et
al., 2009]. The Mining Software Repositories (MSR) field
analyzes the rich information available in these software
repositories to discover interesting facts about the software
projects [Diehl et al., 2009]. Examples of software reposi-
tories are [Hassan et al., 2005] :

1. source control repositories store changes to the
source code as development progresses;

2. bug repositories keep track of the software defects;
3. archived communications between project develop-

ers record rationale for decisions throughout the life
of a project.

Software developers use these repositories to interact
with each other or to solve software-related problems. For
example, source-code and bugs are quite often discussed on
bug tracking systems or project mailing lists. By extract-
ing rich information from these repositories, one can guide
decision processes in modern software development. For
example, data in a source control repository could be ana-
lyzed to extract the authorship information, which could be

linked to additional authorship information extracted from
author tags of source-code files. This could allow to keep
track of which source files were committed by a developer
in different periods of time. With “Linked Data Driven
Software Development” (LD2SD) [Iqbal et al., 2009], we
have introduced a Linked Data-based methodology to re-
late data across software repositories explicitly and unam-
biguously. The so created interlinked data sets can be used
for querying and browsing the related information that ex-
ists in these software repositories.

An excerpt of an exemplary RDF representation of Java
source-code using our LD2SD approach is shown in list-
ing 1. Further, an example of RDF representation of a SVN
Commit is shown in listing 2.

1 @prefix baetle:
<http://baetle.googlecode.com/svn/ns/#> .

2 @prefix ld2sd: <http://ld2sd.deri.org/LD2SD/ns#> .
3 @prefix : <http://ld2sd.deri.org/data/Java/> .
4 :connect a baetle:JavaClass;
5 baetle:author

<http://ld2sd.deri.org/data/author/Developer_A>
;

6 ld2sd:imports "java.io.IOException" ,
7 "javax.servlet.ServletException" ;
8 ld2sd:hasMethod :connect#getConnection .

Listing 1: An exemplary Java RDFication.

1 @prefix baetle:
<http://baetle.googlecode.com/svn/ns/#> .

2 @prefix owl: <http://www.w3.org/2002/07/owl#> .
3 @prefix : <http://ld2sd.deri.org/data/Svn2RDF/> .
4 :275 a baetle:Committing ;
5 baetle:modified

<http://svn.deri.org/trunk/org/link/connect.java>
;

6 baetle:author
<http://ld2sd.deri.org/data/author/Dev_A> .

7 <http://svn.deri.org/trunk/org/link/connect.java> a
8 baetle:JavaSource ;
9 owl:sameAs <http://ld2sd.deri.org/data/Java/connect>

.

Listing 2: An exemplary Subversion RDFication.

The listings indicate one major problem in the context
of mining these repositories: often developers use different
identities for each software repository and sometimes mul-
tiple identities for the same repository, while interacting
with these software repositories in different context. Using
distinct identities for different repositories makes develop-
ers appear as different entities. Hence we need methods
and techniques to correctly link the different identities of
software developers. This is a main requirement for, among
others, being able to keep track of the developers’ activities
in different software repositories.

There exist only few works discussing this particular is-
sue (see Section 3). However, these works either lack in



details or propose simplified solutions. In a series of ex-
periments, we found that the so far proposed methods are
not sufficient for all cases. We reflect on these results in
Section 4. Thus, we argue that we need more sophisti-
cated identification methods. Specifically, we propose to
use graph-based mechanisms. This is based on the ob-
servation that all the repository data can be represented
as graphs. Moreover, these graphs are related and simi-
lar to each other, as they are based on related and simi-
lar activities from the same set of developers. Finally, we
conclude and propose to use these graph-based and related
approaches in Section 5.

2 Identities in Software Repositories
In order to interact with the many software repositories that
are part of an open-source project, developers usually re-
quire to adopt an identity for each repository. Often, devel-
opers use multiple identities for the same repository [Rob-
les and Gonzalez-Barahona, 2005]. Different types of iden-
tities that developers use in software repositories discussed
by Robles et al. are (also summarized in Table 1):

1. In a source-code file, developers appear with many
different identities, such as real life names, email ad-
dresses, SVN identifiers and sometimes the combina-
tion of real life name and email addresses;

2. Developers usually use multiple email addresses to
send mails to the project mailing list. Sometimes the
email headers contain the <name, email> pair, which
helps to link the email address to the developer;

3. To commit source-code on the source control reposi-
tory, developers use a separate account on the version-
ing system;

4. Bug tracking systems require an account associated
with an email address.

Data Source Identities
Source Code Name Surname
Source Code username@domain.com
Source Code Name[username@domain.com]
Source Code $subversionID
Mailing List username@domain.com
Mailing List Name Surname
Versioning System $subversionID
Bug Tracking username@domain.com

Table 1: Identities found in different software reposito-
ries [Robles and Gonzalez-Barahona, 2005].

In open-source projects, project outsiders (i.e., contrib-
utors) also submit source-code patches to the project mail-
ing list. They cannot contribute code directly to the source
control repository, because they are not invited to be part of
the core group of developers of that project [Hassan, 2008].
Such contributors quite often mention their names in the
javadoc1 of the source-code files while modifying them to
fix a particular bug or adding a new feature request to the
project. When core developers finally commit the changes
of contributors to the source-control repository, they very
often mention the name of the contributor who provided the
patch in the summary of the commit (e.g., “Patch provided
by DeveloperABC ...”). Such information is very useful for
analysis if extracted properly and interlinked to the correct
developer name.

However, the fact that the sets of users differ between
the repositories increases the difficulties of mapping IDs
between them. This is a further challenge beside the fact

1http://java.sun.com/j2se/javadoc/
writingdoccomments/

that we have no 1:1 mapping, neither in one repository nor
over different repositories. Actually, we often encounter an
n:m mapping, e.g., several email addresses might belong to
the same developer and multiple developers might use the
same email address. An example of the later is an address
like developers@apache.org. While this might be
obvious in this case, it poses a significant challenge for au-
tomated approaches for developer identification.

3 Related Work
To the best of our knowledge, there are only a few pub-
lished works on identifying and relating the different iden-
tities that developers use to interact with different tools in
the field of software engineering. In [Bird et al., 2006],
Bird et al. proposed an approach to produce a list of
<name,email> identifiers by parsing the emails and clus-
tering them. The clustering algorithm to measure the sim-
ilarity between every pair of IDs is based on string simi-
larity between names, between emails, between names and
emails, etc. Two IDs with a similarity measure lying be-
low a pre-defined threshold value are placed into the same
cluster. The authors use different approaches to compute
the similarity measures between every pair of IDs, some
of which we tested on our dataset to validate the effective-
ness of these approaches (cf. Section 4.1 and Section 4.2).
We found that their approach failed to provide satisfying
results in our case. We use this as a motivation to argue for
sophisticated approaches, such as graph-based methods.

[Robles and Gonzalez-Barahona, 2005] discusses the
problem of developer identification in general, but the work
lacks in details about the heuristics they propose to iden-
tify and match the different identities of developers. This
makes it difficult to validate their approaches for solving
this problem. The authors propose a technique to build
one identity from another by extracting the “real life” name
from email addresses, such as nsurname@domain.com,
name.surname@domain.com etc. This is an approach
based on pre-defined name schemes, a variant that we also
evaluate for our case in Section 4.3. Similarly, this method
did not provide satisfying results for the data set we investi-
gated. Further, they try to match user names obtained from
CVS to email addresses (excluding the domain after “@”).
This approach relies on string similarity again.

In general, the problem is related to duplicate detec-
tion. While research in this area mostly refers to identi-
fying duplicates in the same data set, the techniques might
be mapped to the case of matching over different data sets.
However, they are tailor-made for identifying different IDs
of the same developer inside one repository. [Naumann
and Herschel, 2010] provides a nice overview of this re-
search direction. Interestingly, the authors also reflect on
graph-based duplicate detection. The general idea is to use
structural measures of graphs in order to identify different
nodes that are similar to each other, wrt. these structural
features. Two very similar nodes are likely referring to
the same person. Bringing these approaches to the case
of multiple graphs forms a basis for several works on net-
work de-anonymisation [Narayanan and Shmatikov, 2009;
Wondracek et al., 2010]. The idea is similar: use the struc-
tural information from one (partially) known graph and
use it to identify similar nodes in another graph, one of
which we have only (maybe limited) structural information.
Again, those nodes that are very similar are likely refer-
ring to the same person. This requires input graphs that are
somehow related to each other. Further, the more adversary
information we have, the higher accuracy we can achieve.
We explore this approach further for our case, where we
have several different input graphs, in Section 5.



4 Preliminary Results
In this section, we present results gained on data from a rep-
resentative open-source project: Apache Tomcat2. We exe-
cuted some experiments to evaluate the methods described
in [Bird et al., 2006] and [Robles and Gonzalez-Barahona,
2005]. In the following, we refer to email addresses by
using only the term email. We gathered data by parsing
the emails from Apache Tomcat mailing lists starting from
2005 to date. For every email containing a written name
and the according email, we extracted the from and to field
from the email header to produce a list of <name,email>
pairs. We parsed 49,927 emails from the mailing list and
produced 1261 distinct <name,email> pairs. We use these
results as a ground proof to validate the different techniques
that could be utilized to interlink the different identities of
a developer. The reason for using data from a set where we
actually know the exact matching is simple: it is the only
way to provide some ground truth. It is not possible to ex-
tract similar information for other types of IDs. The only,
clearly impractical, way would be to ask all involved per-
sons for the different IDs they use. However, we strongly
believe that the gained results are significant for these other
types of IDs as well. Moreover, the methods we tested were
proposed for matching email addresses.

To check the effectiveness of each approach, we first
used the approach to find a matching developer name for
each email. Then, we computed two versions of precision
P and recall R values for each approach using the follow-
ing equations:

P1 =
#emails with at least one correct match

#matched emails
(1)

R1 =
#emails with at least one correct match

#total emails
(2)

P2 =
#emails with exactly one correct match

#matched emails
(3)

R2 =
#emails with exactly one correct match

#total emails
(4)

By determining these different types we gain some in-
teresting additional knowledge. For P1 and R1 we count
a hit if we found at least one correct match, i.e., even if
we found more incorrect matches. This provides an “op-
timistic” quality assessment, as the correct match(es) are
found. Anyhow, in reality one would still have to filter out
the wrong matches. Thus, we determine a “pessimistic”
quality assessment in P2 and R2. If there exist correct and
wrong matches for a given email this is not regarded as a
hit.

In order to compute the similarities between developer
names and email addresses or between two email addresses
(see Section 4.1 and Section 4.2), we used the Levenshtein
edit distance [Ukkonen, 1985] algorithm, as suggested in
[Bird et al., 2006]. The match(es) for an email are those
developer names with the lowest distance. Clearly, there is
no sense in allowing arbitray large distances, as this would
mean that one string can be transformed into a completely
other one. Thus, we tested three different threshold values:

1. the maximal length of both strings
2. the minimal length of both strings
3. a fixed threshold value of 4

2http://tomcat.apache.org/

4.1 Similarity between Names and Emails
In the first test we matched email addresses (excluding
the domain after “@”) and developer names by doing a
pairwise comparison. Based on the above described ap-
proaches, we computed the precision and recall values,
which are shown in Table 2.

Threshold P1 in % R1 in %
Maximum length 67.1 57.1
Minimum length 57.4 46.3
Fix Threshold 54.4 30.3
Threshold P2 in % R2 in %
Maximum length 24.3 20.1
Minimum length 18.4 15.3
Fix Threshold 48.4 27.2

Table 2: Names-email similarity results.

The results for P1 and R1 are actually quite good, where
the maximal-length threshold seems to be the best choice.
However, the accuracy is not high enough. Moreover, the
values of P2 and R2 show that these methods produce a
lot of false matches. As the fixed threshold seems to be
the most “stable” in that context, we can learn that high
thresholds tend to match very different strings – and thus
create more false positives. In general, all methods are not
very well suited for practice on a data set like ours.

4.2 Similarity between Emails
Besides names and emails, it is very likely that email ad-
dresses are textually similar to each other if they belong to
the same developer. Thus, in the second test, we computed
the pairwise similarities between email addresses (exclud-
ing the domain after “@”) and determined match(es) for
one email by choosing those with the lowest distance. This
was also suggested in [Bird et al., 2006]. The resulting
precision and recall values are shown in Table 3.

Threshold P1 in % R1 in %
Maximum length 3.2 3.2
Minimum length 3.1 3.0
Fix Threshold 7.2 2.4
Threshold P2 in % R2 in %
Maximum length 2.0 2.0
Minimum length 1.5 1.5
Fix Threshold 3.5 1.3

Table 3: Email similarity results.
Clearly, this idea does not work at all for our data. The

low values show that assuming similarity between emails
in order to find matches is an absolutely inappropriate so-
lution for our case.

4.3 Matching based on Name Schemes
More likely, email addresses are built from the “real
life” name of a developer. As suggested by [Robles and
Gonzalez-Barahona, 2005], in the third test we tried to
identify matching developer names for emails (excluding
the domain after “@”) by checking the relation between
them based on different name schemes. For example,
aftab.iqbal@deri.org matches to Aftab Iqbal
based on the name scheme name.surname. Based on our
observations on different open-source projects we selected
different name schemes, which developers quite often used
to build their email addresses : name.s (e.g., aftabi),
n.surname (e.g., aiqbal), n.s (e.g., ai), na.su (e.g., afiq),
name.surname (e.g., aftabiqbal), e.surname (e.g., biqbal)
and name (e.g., aftab). Note that the dot in a name scheme
is only for illustration purposes – in the actual matching we
do not use dots and ignore them in emails if present. Pre-
cision and recall as computed for each of the name scheme
are shown in Table 4.



NameScheme P1 in % R1 in %
name.s 83.0 2.0
n.surname 96.0 9.2
n.s 33.3 1.0
na.su 50.0 0.2
name.surname 99.4 14.0
e.surname 100.0 0.6
name 72.0 3.5
NameScheme P2 in % R2 in %
name.s 65.5 2.0
n.surname 94.0 9.0
n.s 5.0 0.1
na.su 0.0 0.0
name.surname 99.4 14.0
e.surname 100.0 0.6
name 72.0 3.5

Table 4: Namescheme - email results.

To our surprise, most of the schemes result in very high
precision values, for both types of quality measures. This
means that if we find a match with these techniques, it is
very likely a correct match. However, the in contrast very
low recall values show that this method is capable of iden-
tifying only a handful of all matches. Thus, on its own, it
is also not suited for our use case.

Summarizing, we can state that all three tested ap-
proaches do not prove to be suited for our case. As we
have some good results in parts, it seems to be promising
to combine these techniques with some more advanced ap-
proaches. By inspecting the precision and recall values,
we can conclude that combining the methods among them-
selves is not promising. Thus, in the following section, we
discuss graph-based methods to complement them.

5 Graph Support: A New Way of Developer
Identification

As briefly mentioned in Section 3, there are several ap-
proaches that tackle a problem similar to the one discussed
here on the basis of graphs. The main principle is that if
we have two related graphs, we can use the structural fea-
tures of nodes from one graph to reflect on the nodes from
the other graph. This is particularly efficient in the context
of social network graphs [Narayanan and Shmatikov, 2009;
Wondracek et al., 2010], i.e., graphs built from social rela-
tions between persons.

The approach suggested by us builds on the same prin-
ciple. Out of the different repositories, we can construct
several graphs: developer-to-file relations, developer-to-
developer relations (e.g., working on the same files), email-
to-email conversations, bug-to-developer relations, etc.
While not all of these graphs are from social interactions,
they are clearly all related to each other. Using some
base knowledge, for instance gained from the name scheme
methods described above, we can try to identify pairs of
matching nodes. In order to map SVN IDs to developer
names we could for instance build “file fingerprints” (sim-
ilar to the group fingerprints in [Wondracek et al., 2010])
and compare them. There are plenty of different options.
The main task is to identify the kind of relations that con-
nect two or more graphs.

Unfortunately, we are currently restricted in the graphs
we can use. This is mainly due to the fact that we have
ground truth only for emails and developer names. The
only graphs we can extract from the Apache Tomcat project
containing both types of IDs are email-to-email conversa-
tions and developer-to-developer relations (based on com-
mon files). However, we found that both graphs are sim-
ilar in certain structural features, such as centrality values
and degree distribution. This is quite intuitive, as develop-
ers that handle more classes (central position, higher de-

gree) can be assumed to communicate more by email. In
the very near future we plan to develop according meth-
ods for developer identification based on this observation.
Later, we plan to extend these approaches to all types of
graphs and IDs we find in the open-source software repos-
itories. Moreover, we believe it is promising to extend the
raw graphs we find by graphs derivated from other knowl-
edge. For example, we will analyse the actual content of
email conversations. Using according NLP techniques, we
will very likely find more relations between developers and
other mail users.

With confidence, we could show that existing methods
are not suited for all cases. With the experiences from
duplicate detection and de-anonymization, we strongly be-
lieve to have identified the right way for sophisticated de-
veloper identification. We are looking forward to explore
this very interesting and relevant field of research in more
detail in very near future.
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