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Abstract

A huge amount of content found on the Web
is dynamic by its nature, particularly with the
rise of Web 2.0 and beyond. This is of special
interest for the Semantic Web community, not
only but particularly regarding resources on the
Linked Open Data (LOD) Web. However, the
dataset dynamics of the LOD graph are hardly
explored so far. Existing approaches from the
traditional HTML Web are not sufficient to mine
and discover the dynamics with satisfying accu-
racy and efficiency, as they do not consider the
special characteristics of LOD. We present first
initial results on this topic and discuss future
steps. First results are obtained by mining the
groups of URIs with similar change frequencies
and by applying time series techniques as well as
clustering techniques.

Motivation

At the time of writing, we can find several hundred datasets
published as Linked Open Data (LOD) on the Web. The
LOD cloud contains up to several billion Resource Descrip-
tion Framework (RDF) triples of machine readable infor-
mation, describing real world entities (resources) and the
relations among them. This data forms a huge directed and
labelled graph (resources are nodes, relations are edges),
which can be accessed, traversed and consumed by humans
and intelligent software agents. Currently, the so formed
LOD graph (see Figure 1) contains billions of nodes but
only a couple of million edges '. However, experts in the
field commonly agree that this gigantic graph will even
grow faster in the future and become more dense by adding
more labelled links between the nodes. New data and links
between the data are added either by humans or by ma-
chines (e.g., from data converters like Any23? or by content
management systems like Drupal 7). The LOD research
community focuses on the different issues in identifying,
linking and publishing this data.

A still nearly unexplored field are the dynamics of the

contained data sets. With the term dataset dynamics we
refer to content and interlinking changes in the Linked Data
graph. Besides content changes, the dynamics of nodes
(i.e., entities) and links are of particular interest. These can
be roughly categorised as follows:

'nttp://esw.w3.org/TaskForces/

CommunityProjects/LinkingOpenData/DataSets/
[Statistics|LinkStatistics]

http://any23.o0rg/
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Figure 1: The LOD cloud in mid 2009, courtesy of Cyga-
niak and Jentzsch.

e Dynamics of resources: New nodes are added and
old nodes are removed;

e Dynamics between resources: New relations are
added (in the form of new triples) and old ones might
be removed;

In a first attempt [Umbrich er al., 2010] we monitored the
change frequency of Linked Data resources and revealed
that most of them show the same behavior as HTML Web
documents. However, to the best of our knowledge, there is
no published work describing attempts to apply techniques
from other mature research areas dealing with the analysis
and investigation of dataset dynamics. In this work, we
take a closer look at how methods from the data mining
and machine learning community can be used for this task.
We identify suitable and promising techniques, discuss the
benefit we expect from their application and present some
preliminary results indicating the usefulness.

The motivating use-case for our study of dataset dynam-
ics is to improve concurrent work on an efficient system
for performing live queries over the LOD Web [Harth et
al., 2010]. The challenge is to decide which (sub-)queries
can be run against a cache or data summary and which
(sub-)queries have to be executed live over the Web con-
tent to guarantee up-to-date results. However, there are
several other tasks related to managing Web data that can
benefit from a deeper understanding of dataset dynamics:
Web crawling and caching [Cho and Garcia-Molina, 20031,
maintaining link integrity [Haslhofer and Popitsch, 2009],
serving of continuous queries [Pandey et al., 2003].

Regarding the above sketched use cases, there are some
main questions we have to focus on. These are:

e What classes of dynamics can and should we distin-
guish?



e What actual methods are suited to classify LOD re-
sources with respect to their dynamics?

e On what features should these methods be based on?

e How can we efficiently predict future changes and the
types of changes?

To start the investigation of these questions we firstly focus
on one of the underlying main questions, which we see as
the most interesting starting point:

What correlations between resources and their dynamics
can we identify using methods from data mining, machine
learning and graph analysis?

The specific correlations we expect and therefore plan to
investigate are correlations between the dynamics of the re-
sources and:

1. their domain names (i.e., their origin)
2. the used vocabulary (i.e., RDF predicates and classes)

3. their linkage (i.e., if one resource changes how likely
is it that resources linked to it change as well)

To achieve this, we first started to continuously monitor a
large set of LOD resources. Based on the observed dynam-
ics, we can cluster these resources and apply correlation
analysis between sets of resources as well as between re-
sources and their features. In this work, we present initial
results on this analysis and discuss future steps.

2 Dataset Dynamics on the LOD Web

In this section, we first introduce the data model of RDF
and how it contributes to the LOD Web. Secondly, we dis-
cuss how our problem of studying dataset dynamics can
be mapped to the problem of the dynamics of nodes in a
labelled directed graph. Finally, we elaborate on the im-
portance of data mining to reveal new insights into the dy-
namics of such a graph.

2.1 RDF and Linked Data

The Resource Description Framework [Manola and Miller,
2004] defines a data format for publishing schema-less data
on the Web in the form of (subject, predicate, object)
triples. These triples are composed of unique identifiers
(URI references), literals (e.g., strings or other data values),
and local identifiers called blank nodes as follows:

Definition 1. (RDF Triple, RDF Term, RDF Graph) Given
a set of URI references U, a set of blank nodes B, and a set
of literals L, a triple (s, p, 0) € UUB) xU X (UUBUL)
is called an RDF triple, We call elements of U UB U L RDF
terms. Sets of RDF triples are called RDF graphs.

The notion of graph stems from the fact that RDF triples
may be viewed as labelled edges connecting subjects and
objects. RDF published on the Web according to the
following principles is called Linked Data [Berners-Lee,
2006]: 1) URIs are used as names for things: in contrast
to the HTML Web where URIs are used to denote con-
tent (documents, images), on the Semantic Web URIs can
denote entities such as people or cities; 2) URIs should
be dereferenceable using the Hypertext Transfer Protocol
(HTTP): a user agent should be able to perform HTTP GET
operations on the URI; 3) Useful content in RDF should be
provided at these URIs: a Web server should return data en-
coded in one of the various RDF serialisations; 4) Include
links to other URIs for discovery: a user agent should be
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Table 1: Change matrix with s;, € {—1,0,1,2}.

able to navigate from an entity to associated entities by fol-
lowing links, which enables decentralised discovery of new
data.
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Figure 2: Abstraction of a subgraph of the LOD Web.

As such, Linked Data forms a labelled directed graph
as depicted abstractly in Figure 2. We can see that sub-
graphs are contained in sources (a source is a container of
a sub-graph and also has a unique URI, in analogy to Web
documents), where resources and sources are interlinked.
For the remainder of this paper, we focus on how to anal-
yse the dynamics of the nodes and edges in such a graph.
For further simplification, we do not distinguish between
changing sources and entities — interested readers are re-
ferred to [Umbrich et al., 2010]. We use the following def-
inition of a change of a node:

Definition 2. (Node state change s; ;) A change of the state
of a node identified by URI U; is detected iff the tree of
depth 1 with root node U; differs between two observations
0¢—1,0¢. We denote a change with s; ; = 2, s; 4 = 0 other-
wise. In addition, if a node appears in t we denote this with
si¢ = 1, if it disappears we use s; ; = —1.

The results of monitoring these changes over time are
represented in an m X n change matrix (m resources and n
observations) as illustrated in Table 1.

2.2 Data Mining

Traditionally, change frequencies of Web documents are
modeled as Poisson processes [Cho and Garcia-Molina,
2000] and advanced estimators are used to predict the like-
lihood of the next change [Cho and Garcia-Molina, 2003].
Our current findings uncover that this model holds only for
some resources of the LOD Web [Umbrich et al., 2010].
In addition, we strongly believe that by applying more ad-
vanced machine learning methods we can perform better
predictions of changes. By applying these techniques, we
expect to reveal the existance of correlations between the
change characteristics of different resources. As such, we
will investigate correlation analysis, frequency analysis and
techniques for change detection. Concrete techniques that
we plan to assess are, among others, SVD and SVM, DFT
and wavelet transformation as well as change point detec-
tion as known from data streams and graphs.



3 Describing Change Features and
Clustering

A first step towards our general objectives is to identify
nodes with similar dynamics. Thus, we first investigated
how to cluster nodes wrt. to their characteristic dynamics.
The main questions we have to answer for that is: What are
features describing the dynamics of a resource? Possible
describing features are:

e Average change frequency ratio: The dynamics of
each node can be simply described by the number of
node state changes divided by the overall number of
snapshots in the monitored period.

e Statistical summaries of change behaviour: We could
use statistical summaries of node state changes, such
as central tendencies (arithmetic mean, median or in-
terquartile mean) or statistical dispersion (standard de-
viation, variance or quantiles).

e Periodicities of changes: such periodicities can be de-
termined by DFT or wavelets transformation, which
would overcome obvious issues in using an average
change frequency (e.g., one entity changing very of-
ten in the beginning of the monitored time but then
being rather static, compared to another entity chang-
ing regularly in larger intervals over all the time).

e Eigenvalues or principal components: Using reduc-
tion techniques like SVD or PCA we can try to extract
significant features capturing the characteristics of the
dynamics.

Once we decided how to represent dataset dynamics on
the basis of the dynamics of nodes we can apply cluster-
ing algorithms to group nodes with similar dynamics. Pre-
vious experiments indicated the existance of significantly
different clusters [Umbrich et al., 2010]. Afterwards, we
will use the nodes from the gained clusters to analyse cor-
relations among them and among single nodes and their
edges. Methods we have in mind for that are classifica-
tion approaches and correlation analysis, such as comput-
ing the correlation and covariance matrices between URI
attributes; e.g., the correlation between node state changes
and/or the type of incoming links. We will look into differ-
ent methods to compute the correlation coefficients; e.g.,
the Pearson or Pearman’s correlation coefficient or entropy-
based mutual information/total correlation methods that al-
low us to detect even more general dependencies. These
represent first steps to answer the aforementioned questions
about concrete correlations.

4 Preliminary experiments

One question we already investigate in this work (see Sec-
tion 4.3) is: How many clusters can we identify? Or: What
is the “optimal” number of clusters? This is particularly
relevant as we first decided to apply k-Means clustering,
which requires an a-priori definition of k. If the number of
clusters is too small, the clusters contain too many items
which are not very similar. If it is too large, we do not
capture the actual similarities. With this we want to over-
come the limitations of using “soft” categories, e.g., using
pre-defined classes like static, low dynamic, medium dy-
namic, very dynamic. This might be sufficient for some
applications, but not for the particular approaches we are
working on. For instance, we want to be able to decide ac-
curately when a crawler has to revisit a site to update an

index or how to set a sort of cache coherence time in or-
der to achieve satisfying data freshness. The materials and
methods used and applied to get these first preliminary re-
sults are described next.

4.1 Data

As the data for our experiments we use a 1% random sam-
ple from a data set containing 11 weekly observations of
161K LOD sources crawled using the LDSpider frame-
work 3. The average observations size is 440MB gzipped
and a total number of 2.7M nodes and roughly 7 million
links over the whole monitored time. We used the random
sample to achieve manageable processing times.

For analysing the sample, we decided to use the data-
mining framework RapidMiner*. RapidMiner offers a wide
variety of data-mining tools, ranging from basic data clean-
ing to complex transformations and analyses.

4.2 Methods

For detecting node state changes between two observa-
tions o;_1,0; we used a straightforward approach based
on a merge-sort scan. After sorting all relevant statements
by their syntactic natural order (subject-predicate-object),
we performed a pairwise comparison of the statements by
scanning two observations in linear time. We record a state
change as soon as the order of the statements differed be-
tween two observations (e.g., a data producer adds or re-
moves outgoing edges and nodes).

The used sample consists of 26961 URIs and 10 obser-
vations (M=26961 x 10 matrix). In a pre-processing, step
we transformed the rectangularly shaped input data into
smooth series of values to finally compute the frequency
spectrum with a Fourier analysis. The concrete steps in-
volved are:

1. Organise by change events: We split the input
change matrix into four matrices in the first trans-
formation process. One matrix M = [m§y];i =
1,2,....,m;t = 1,2,...,n for each Changé event
ev [ev = -1 (disappear), 0 (no change),l (appear), 2
(change)]. The matrix values are encoded as follows:

o {1 ifs; s =ecv 0

"3 70 otherwise

2. Interpolation & Smoothing We interpolated the data
values for each matrix by tenfolding each single value
and applying an exponential smoothing over the new
time series. The interpolation is necessary since we
have only 10 observations for each URI. Further, with
the interpolation and smoothing we implicitly model
the uncertainty of the event. We only know that a
change event occurred between two observations, but
not exactly when. This results in four matrices with
100 attributes for each URI. (M?”tpol = 26961 x 100

i m
matrix)

3. Fourier Analysis: After the interpolation and
smoothing of the data we performed a Fourier anal-
ysis. The analysis resulted in 32 spectrums for each
URI (MY =26961 x 32 matrix).

ourier

4. Join of Matrices by their URI: Finally, we joined the
four matrices by their URIs which resulted in our final
matrix (M finqr = 26961 x 128 matrix).

*http://code.google.com/p/ldspider/

*http://rapid-i.com/content/view/181/190/



4.3 Preliminary Results

Figure 3 shows results analysing the number of clusters for
the k-Means clustering with a centroid distance evaluation
measure. The high number of different clusters came to
our surprise. Clearly, a “soft” category approach with only
a handful of clusters as sketched above cannot work out
to capture these similarities satisfyingly. Moreover, after a
brief manual inspection of the gained clusters, we can intu-
itively reason about basic correlations, such as nodes from
same domains are often found in same clusters. This under-
lines the appropriateness of the applied methodology and
motivates for further work in this direction towards actual
correlation analysis. The gained clustering results provide
a useful basis for these upcoming tasks.

We also tried to perform an agglomerative clustering.
Unfortunately, we could not gain any results with that due
to performance issues. Regarding the actually small sample
we used, this highlights the need for particularly scalable
methods in the context of the huge LOD graph.

700 1 (B (IR -

600 1 -

500 7 -

Avg. within centroid distance

200 -
N | I | I I i I i i I I I 7
T — T — T — T — T — T — T —— T — T — 1 —1—1 l y l
3 4 5 6 7 8 9

2 10 11 12 13 14 15 16 17 18 19 20

Number of Clusters

Figure 3: Number of clusters and average centroid distance.

5 Conclusion & Future Work

In this work, we presented our motivation and first ideas
to study the dataset dynamics of the LOD Web using ma-
chine learning and data-mining approaches. We strongly
believe that we can encompass comprehensive details about
attributes and features that trigger or relate changes of LOD
resources. The gained knowledge can eventually be inte-
grated into a wide range of Web-related applications. In an
first attempt, we identified how we can model the time se-
ries of changes and analyse its spectrum. Preliminary clus-
tering results indicate the appropriateness of this approach
and provide interesting first insights. We hope that this ini-
tial report triggers a rich discussion about suited methods
and promising approaches in the community.

There exist many directions for future work. Clearly, we
need a longer history of changes and thus we will continue
our monitoring approach over the next years. Further, we
will enrich our change matrix with more information. Pos-
sible information includes the incoming labelled links for
the nodes, the node state changes of the one hop surround-
ing nodes and more features about the change event (type
and fraction of change). Our future investigations include
the following directions:

Change correlations We will investigate siophisticated
methods to identify correlations between the dynamics of
nodes. Especially, data reduction techniques such as PCA
or SVD are of high interest to us and we will explore how
and to which extend we can apply them.

Change classification Another area of high relevance for
future work is to classify URIs into classes of dynamics.

We are particularly interested to find the best features for
the classification and we consider to use the outcome of the
correlation analysis to increase the classification quality.

Change prediction Knowing in advance at which time
in the future a resource is very likely to change is of
tremendous value for our use case. Thus, we will ex-
plore machine-learning methods to compute the most likely
change time based on observed change events. The quality
of our predictions can also serve as an evaluation measure
of the described approach.

Dealing with incomplete history Eventually, we will ex-
plore methods to deal with incomplete change histories. It
is hard to monitor a resource constantly over a long time
period. In a real world setup, a system will never be able to
get a continuous history of change events of a resource. For
instance, the window intervals might be too large and mul-
tiple changes can happen between to snapshots. In such
a case it is of high importance to be able to handle these
missing events and still predict and classify accurately.
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