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Abstract

We propose a generalization of multilabel clas-
sification that we refer to as graded multilabel
classification. The key idea is that, instead of re-
questing a yes-no answer to the question of class
membership or, say, relevance of a class label
for an instance, we allow for a graded member-
ship of an instance, measured on an ordinal scale
of membership degrees. This extension is moti-
vated by practical applications in which a graded
or partial class membership is natural. Apart
from introducing the basic setting, we propose
two general strategies for reducing graded multi-
label problems to conventional (multilabel) clas-
sification problems. Moreover, we address the
question of how to extend performance metrics
commonly used in multilabel classification to the
graded setting, and present first experimental re-
sults.

1 Introduction
Problems of multilabel classification (MLC), in which an
instance may belong to several classes simultaneously or,
say, in which more than one label can be attached to a sin-
gle instance, are ubiquitous in everyday life: At IMDb, a
movie can be categorized as action, crime, and thriller, a
CNN news report can be tagged as people and political at
the same time, etc. Correspondingly, MLC has received
increasing attention in machine learning in recent years.

In this paper, we propose a generalization of MLC
that we shall refer to as graded multilabel classification
(GMLC). The key idea is that, instead of requesting a yes-
no answer to the question of class membership or, say, rele-
vance of a class label for an instance, we allow an instance
to belong to a class to a certain degree. In other words,
we allow for graded class membership in the sense of fuzzy
set theory [Zadeh, 1965]. In fact, there are many applica-
tions for which this extension seems to make perfect sense.
In the case of movie genres, for example, it is not always
easy to say whether or not a movie belongs to the cate-
gory action, and there are definitely examples which can be
considered as “almost action” or “somewhat action”. An-
other obvious example comes from one of the benchmark
data sets in MLC, namely the emotions data [Trohidis et al.,
2008]. Here, the problem is to label a song according to the
Tellegen-Watson-Clark model of mood: amazed-surprised,
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happy-pleased, relaxing-clam, quiet-still, sad-lonely, and
angry-aggressive.

It is important to emphasize that the relevance of a label
is indeed gradual in the sense of fuzzy logic and not un-
certain in the sense of probability theory. The latter would
mean that, e.g., a song is either relaxing or it is not—one
is only uncertain about which of these two exclusive al-
ternatives is correct. As opposed to this, gradualness is
caused by the vagueness of categories like “relaxing song”
and “action movie”, and means that one does not have to
fully agree on one of the alternatives. Instead, one can say
that a song is somewhere in-between (and can be certain
about this).

As will be explained in more detail later on, our idea is to
replace simple “yes” or “no” labels by membership degrees
taken from a finite ordered scale such as

M = { not at all, somewhat, almost, fully }. (1)

Admittedly, graded multilabel data sets of that kind are not
yet widely available. We believe, however, that this is a
kind of hen and egg problem: As long as there are no meth-
ods for learning from graded multilabel data, new data sets
will be created in the common way, possibly forcing people
to give a “yes” or “no” answer even when they are hesitat-
ing.

The rest of this paper is organized as follows: The prob-
lem of multilabel classification is introduced in a more for-
mal way in Section 2. In Section 3, we propose our graded
generalization of MLC and, moreover, outline two differ-
ent strategies for reducing GMLC problems to conventional
(multilabel) classification problems. In Section 4, we ad-
dress the question of how to extend MLC evaluation met-
rics from the conventional to the graded setting. Finally,
Section 5 presents some first experimental results.

2 Multilabel Classification
Let X denote an instance space and let L =
{λ1, λ2, . . . , λm} be a finite set of class labels. More-
over, suppose that each instance x ∈ X can be associated
with a subset of labels L ∈ 2L; this subset is often called
the set of relevant labels, while the complement L \ L is
considered as irrelevant for x. Given training data in the
form of a finite set T of observations in the form of tu-
ples (x, Lx) ∈ X × 2L, typically assumed to be drawn
independently from an (unknown) probability distribution
on X × 2L, the goal in multilabel classification is to learn
a classifier H : X −→ 2L that generalizes well beyond
these observations in the sense of minimizing the expected
prediction loss with respect to a specific loss function; ex-
amples of commonly used loss functions include the subset



zero-one loss, which is 0 if H(x) = Lx and 1 otherwise,
and the Hamming loss that computes the percentage of la-
bels whose relevance is incorrectly predicted:

EH(H(x), Lx) =
1
|L|
∣∣H(x) ∆Lx

∣∣, (2)

where ∆ is the symmetric difference between sets.
An MLC problem can be reduced to a conventional clas-

sification problem in a straightforward way, namely by con-
sidering each label subsetL ∈ 2L as a distinct (meta-)class.
This approach is referred to as label powerset (LP) in the
literature. An obvious drawback of this approach is the po-
tentially large number of classes that one has to deal with
in the newly generated problem; obviously, this number is
2|L| (or 2|L| − 1 if the empty set is excluded as a predic-
tion). This is the reason why LP typically works well if
the original label set L is small but quickly deteriorates for
larger label sets [Tsoumakas and Vlahavas, 2007].

Another way of reducing multilabel to conventional clas-
sification is offered by the binary relevance (BR) approach.
Here, a separate binary classifierHi is trained for each label
λi ∈ L, reducing the supervision to information about the
presence or absence of this label while ignoring the other
ones. For a query instance x, this classifier is supposed to
predict whether λi is relevant for x (Hi(x) = 1) or not
(Hi(x) = 0). A multilabel prediction for x is then given
by H(x) = {λi ∈ L |Hi(x) = 1}. Since binary relevance
learning treats every label independently of all other labels,
an obvious disadvantage of this approach is its ignorance
of correlations and interdependencies between labels.

Many approaches to MLC learn a multilabel classifierH
in an indirect way via a scoring function f : X× L −→ R
that assigns a real number to each instance/label combina-
tion. The idea is that a score f(x, λ) is in direct correspon-
dence with the probability that λ is relevant for x. Given a
scoring function of this type, multilabel prediction can be
realized via thresholding:

H(x) = {λ ∈ L | f(x, λ) ≥ t } ,
where t ∈ R is a threshold. As a byproduct, a scoring func-
tion offers the possibility to produce a ranking (weak order)
�x of the class labels, simply by sorting them according to
their score:

λi �x λj ⇔ f(x, λi) ≥ f(x, λj) . (3)

Sometimes, this ranking is even more desirable as a predic-
tion, and indeed, there are several evaluation metrics that
compare a true label subset with a predicted ranking in-
stead of a predicted label subset; an example is the rank
loss which computes the average fraction of label pairs that
are not correctly ordered:

ER(f, Lx) =

∑
(λ,λ′)∈Lx×Lx

S(f(x, λ), f(x, λ′))

|Lx| × |Lx|
,

where Lx = L \ Lx is the set of irrelevant labels and
S(u, v) = 1 if u < v, = 1/2 if u = v, and = 0 if u > v.
The idea to solve both problems simultaneously, ranking
and MLC, has recently been addressed in [Fürnkranz et
al., 2008]: A calibrated ranking is a ranking with a “zero
point” separating a positive (relevant) part from a negative
(irrelevant) one.

3 Graded Multilabel Classification
Generalizing the above setting of multilabel classification,
we now assume that each instance x ∈ X can belong to

Figure 1: Vertical reduction, viz. prediction of membership
degree (ordinate) for each label (abscissa).

each class λ ∈ L to a certain degree. In other words, the set
Lx of relevant labels is now a fuzzy subset of L. This fuzzy
set is characterized by a membership function, namely an
L −→ M mapping, where M is the set of graded mem-
bership degrees. For notational simplicity, we shall not
distinguish between the fuzzy set Lx and its membership
function, and denote by Lx(λ) the degree of membership
of the label λ ∈ L in the fuzzy set Lx.

In fuzzy set theory, the set of membership degrees is sup-
posed to form a complete lattice and is normally taken as
the unit interval (i.e., M = [0, 1] endowed with the stan-
dard order). Here, however, we prefer an ordinal scale of
membership degrees, that is, a finite ordered set of member-
ship degrees such as (1). More generally, we assume that
M = {m0,m1, . . . ,mk}, where m0 < m1 < . . . < mk

(and m0 = 0 and mk = 1 have the special meaning of zero
and full membership). In the context of multilabel clas-
sification, an ordinal membership scale is arguably more
convenient from a practical point of view, especially with
regard to data acquisition. In fact, people often prefer to
give ratings on an ordinal scale like (1) instead of choosing
precise numbers on a cardinal scale.

The goal, now, is to learn a mapping H : X −→ F(L),
where F(L) is the class of fuzzy subsets of L (with mem-
bership degrees in M ). Following the general idea of re-
duction [Balcan et al., 2008], we seek to make GMLC
problems amenable to conventional multilabel methods via
suitable transformations. There are two more or less obvi-
ous possibilities to reduce graded multilabel classification
to conventional (multilabel) classification. In agreement
with the distinction between the “vertical” description of
a fuzzy subset F of a set U (through the membership func-
tion, i.e., by specifying the degree of membership F (u) for
each element u ∈ U ) and the “horizontal” description (via
level cuts [F ]α = {u ∈ U |F (u) ≥ α}), we distinguish
between a vertical and a horizontal reduction.

3.1 Vertical Reduction
Recall the binary relevance approach to conventional
MLC: For each label λi ∈ L, a separate binary classi-
fier Hi is trained to predict whether this label is relevant
(Hi(x) = 1) or not (Hi(x) = 0) for a query instance
x ∈ X. Generalizing this approach to GMLC, the idea
is to induce a classifier

Hi : X −→M (4)

for each label λi. For each query instance x ∈ X, this clas-
sifier is supposed to predict the degree of membership of
λi in the fuzzy set of labels Lx. Instead of a binary clas-
sification problem, as in MLC, each classifier Hi is now



Figure 2: Horizontal reduction, viz. prediction of a subset
of labels (indicated by black circles) on each level.

solving a multi-class problem. Since the target space M
has an ordinal structure, these problems are ordinal clas-
sification problems. In other words, the vertical reduction
of a GMLC problem eventually leads to solving a set of
m (non-independent) ordinal classification problems; see
Fig. 1 for an illustration.

Just like simple binary problems, ordinal classification
problems are often solved indirectly via “scoring plus
thresholding”: First, a scoring function f(·) is learned, and
k thresholds t1, . . . , tk are determined; then, for an instance
x, the i-th class is predicted if f(x, λi) is between ti−1 and
ti. Of course, if classifiers (4) are learned in this way, i.e.,
by inducing a scoring function f(·, λi) for each label λi,
then these scoring functions can also be used to predict a
ranking (3).

3.2 Horizontal Reduction
From fuzzy set theory, it is well-known that a fuzzy set F
can be represented “horizontally” in terms of its level-cuts.
This representation suggests another decomposition of a
GMLC problem: For each level α ∈ {m1,m2, . . . ,mk},
learn the mapping

H(α) : X −→ 2M , x 7→ [Lx]α . (5)

Obviously, each of these problems is a standard MLC
problem, since the level-cuts [Lx]α are standard subsets of
the label set L. Thus, the horizontal reduction comes down
to solving k standard MLC problems; see Fig. 2 for an il-
lustration.

It is worth mentioning that this decomposition comes
with a special challenge. In fact, since level-cuts are nested
in the sense that [F ]α ⊂ [F ]β for β < α, the k MLC prob-
lems are not independent of each other. Instead, the predic-
tions should be monotone in the sense that

(H(mj)(x) = 1)⇒ (H(mj−1)(x) = 1) (6)

for all j ∈ {2, . . . , k}. Thus, whenever a label λi is pre-
dicted to be in the mj-cut of the fuzzy label set Lx associ-
ated with x, it must also be in all lower level-cuts. Satis-
fying this requirement is a non-trivial problem. In particu-
lar, (6) will normally not be guaranteed when solving the k
problems independently of each other.

Once an ensemble of k multilabel classifiers
H(m1), . . . ,H(mk) has been trained, predictions can
be obtained as follows:

H(x)(λ) = max{mi ∈M |λ ∈ H(mi)(x) } (7)

Thus, the degree of membership of a label λ ∈ L in the
predicted fuzzy set of labels associated with x is given by

the maximum degree mi ∈ M for which λ is still in the
predicted mi-cut of this set.

The prediction of a ranking (3) is arguably less obvi-
ous in the case of the horizontal decomposition. Suppose
that f (m1), . . . , f (mk) are scoring functions trained on the
k level cuts, using a conventional MLC method. As a coun-
terpart to the monotonicity condition (6), we should require

f (m1)(x, λ) ≥ f (m2)(x, λ) ≥ . . . ≥ f (mk)(x, λ) (8)

for all x ∈ X and λ ∈ L. In fact, interpreting f (mi)(x, λ)
as a measure of how likely λ is a relevant label on levelmi,
this condition follows naturally from [Lx]m1 ⊃ [Lx]m2 ⊃
. . . ⊃ [Lx]mk

. On each level mi, the function f (mi)(x, ·)
induces a ranking �(mi)

x via (3), however, the identity
�(mi)

x ≡�(mj)
x is of course not guaranteed; that is, �(mi)

x

may differ from �(mj)
x for 1 ≤ i 6= j ≤ k.

To obtain a global ranking, the level-wise rankings
�(mi)

x need to be aggregated into a single one. To this end,
we propose to score a label λ by

f(x, λ) =
k∑
i=1

f (mi)(x, λ) . (9)

This aggregation is especially reasonable if the scores
f (mi)(x, λ) can be interpreted as probabilities of relevance
P(λ ∈ [Lx]mi

). Then, f(x, λ) simply corresponds to the
expected level of x, since
k∑
i=1

f (mi)(x, λ) =
k∑
i=1

P(λ ∈ [Lx]mi
) =

=
k∑
i=1

P(Lx(λ) ≥ mi) =
k∑
i=1

i ·P(Lx(λ) = mi)

Note, however, that we simply equated the levels mi with
the numbers i in this derivation, i.e., the ordinal scaleLwas
implicitly embedded in a numerical scale by the mapping
mi 7→ i (on L itself, an averaging operation of this kind
is not even defined). Despite being critical from a theoret-
ical point of view, this embedding is often used in ordinal
classification, for example when computing the absolute er-
ror AE(mi,mj) = |i − j| as a loss function [Lin and Li,
2007]. Interestingly, the absolute error is minimized (in ex-
pectation) by the median and, moreover, this estimation is
invariant toward rescaling [Berger, 1985]. Thus, it does ac-
tually not depend on the concrete embedding chosen. Seen
from this point of view, the median appears to be a theoreti-
cally more solid score than the mean value (9). However, it
produces many ties, which is disadvantageous from a rank-
ing point of view. This problem is avoided by (9), which
can be seen an approximation of the median that breaks ties
in a reasonable way.

3.3 Combination of Both Reductions
As mentioned above, the binary relevance approach is
a standard (meta-)technique for solving MLC problems.
Consequently, it can also be applied to each problem (5)
produced by the horizontal reduction. Since BR can again
be seen as a “vertical” decomposition of a regular MLC
problem, one thus obtains a combination of horizontal and
vertical decomposition: first horizontal, then vertical.

Likewise, the two types of reduction can be combined
the other way around, first vertical and then horizontal.
This is done by solving the ordinal classification problems



produced by the vertical reduction by means of a “horizon-
tal” decomposition, namely a meta-technique that has been
proposed by [Frank and Hall, 2001]: Given an ordered set
of class labels M = {m0,m1, . . . ,mk}, the idea is to train
k binary classifiers. The i-th classifier considers the in-
stances with label m0, . . . ,mi−1 as positive and those with
label mi, . . . ,mk as negative.

Interestingly, both combinations eventually coincide in
the sense of ending up with the same binary classification
problems. Roughly speaking, a single binary problem is
solved for each label/level combination (λi,mj) ∈ L×M
(each circle in the picture in Fig. 2), namely the problem to
decide whether Lx(λi) ≤ mj or Lx(λi) > mj . Any dif-
ference between the two approaches is then due to different
ways of aggregating the predictions of the binary classi-
fiers. In principle, however, such differences can only oc-
cur in the case of inconsistencies, i.e., if the monotonicity
condition (6) is violated.

3.4 Generalizing IBLR-ML
Our discussion so far has been restricted to meta-
techniques for reducing GMLC to MLC problems, without
looking at concrete methods. Nevertheless, there are sev-
eral methods that can be generalized immediately from the
binary to the gradual case. As an example, we mention the
IBLR-ML method that will also be used in our experiments
later on. This method, which was recently proposed in
[Cheng and Hüllermeier, 2009], combines instance-based
learning with logistic regression and again trains one clas-
sifier Hi for each label. For the i-th label λi, this classifier
is derived from the logistic regression equation

log

(
π

(i)
0

1− π(i)
0

)
= ω

(i)
0 +

m∑
j=1

γ
(i)
j · ω

(i)
+j(x0) , (10)

where π(i)
0 denotes the (posterior) probability that λi is rel-

evant for x0, and

ω
(i)
+j(x0) =

∑
x∈N (x0)

κ(x0,x) · yj(x) (11)

is a summary of the presence of the j-th label λj in the
neighborhood of x0; here, κ is a kernel function, such
as the (data-dependent) “KNN kernel” κ(x0,xi) = 1 if
xi ∈ Nk(x0) and = 0 otherwise, where Nk(x0) is the set
of k nearest neighbors of x0. Moreover, yj(x) = +1 if λj
is present (relevant) for the neighbor x, and yj(x) = −1
in case it is absent (non-relevant). Obviously, this ap-
proach is able to capture interdependencies between class
labels: The estimated coefficient γ(i)

j indicates to what ex-
tent the relevance of label λi is influenced by the rele-
vance of λj . A value γ(i)

j > 0 means that the presence
of λj makes the relevance of λi more likely, i.e., there
is a positive correlation. Correspondingly, a negative co-
efficient would indicate a negative correlation. Given a
query instance x0, a multilabel prediction is made on the
basis of the predicted posterior probabilities of relevance:
H(x0) = {λi ∈ L |π(i)

0 > 1/2 }.
This approach can be generalized to the GMLC setting

using both the horizontal and the vertical reduction. The
vertical reduction leads to solving an ordinal instead of a
binary logistic regression problem for each label, while the
horizontal reduction comes down to solving the following

k multilabel problems (r = 1, . . . , k):

log

(
π

(i,r)
0

1− π(i,r)
0

)
= ω

(i,r)
0 +

m∑
j=1

γ
(i,r)
j ω

(i,r)
+j (x0) (12)

Recall, however, that these problems are not independent
of each other. Solving them simultaneously so as to guar-
antee the monotonicity constraint (6) is an interesting but
non-trivial task. In the experiments in Section 5, we there-
fore derived independent predictions and simply combined
them by (7).

4 Loss Functions
As mentioned before, a number of different loss functions
have already been proposed within the setting of MLC.
In principle, all these functions can be generalized so as
to make them applicable to the setting of GMLC. In this
section, we propose extensions of some important and fre-
quently used measures. Moreover, we address the question
of how to handle these extensions in the context of the hor-
izontal and vertical reduction technique, respectively.

4.1 Representation of Generalized Losses
To generalize the Hamming loss (2), it is necessary to re-
place the symmetric difference operator defined on sets, ∆,
by the symmetric difference between two fuzzy sets. This
can be done, for example, by averaging over the symmetric
differences of the corresponding level-cuts, which in our
case leads to

E∗H(H(x), Lx) =
∑k
i=1

∣∣[H(x)]mi
∆ [Lx]mi

∣∣
k|L|

. (13)

Note that this “horizontal” computation can be replaced by
an equivalent “vertical” one, namely

E∗H(H(x), Lx) =
∑|L|
i=1 AE(H(x)(λi), Lx(λi))

k|L|
, (14)

where AE(·) is the absolute error of a predicted mem-
bership degree which, as mentioned above, is defined by
AE(mi,mj) = |i − j|. In other words, minimizing the
symmetric difference level-wise is equivalent to minimiz-
ing the absolute error label-wise.

It is worth to mention that the existence of an equiva-
lent horizontal and vertical representation of a loss func-
tion, like in the case of (13) and (14), is not self-evident.
For example, replacing in (14) the absolute error on the or-
dinal scale M by the simple 0/1 loss leads to

E∗0/1(H(x), Lx) =
1
|L|

|L|∑
i=1

{
0 H(x)(λi) = Lx(λi)
1 H(x)(λi) 6= Lx(λi)

.

Just like (14), this is a typical vertical expression of a loss
function, that is, an expression of the form

A
(
{` (H(x)(λi), Lx(λi))}|L|i=1

)
,

where `(·) is a loss defined on L and A is an aggregation
operator. Interestingly, E∗0/1 does not have an equivalent
horizontal representation. Thus, there is provably no loss
function L(·) on 2L (and aggregation A) such that

E∗0/1(H(x), Lx) = A
(
{L ([H(x)]mi , [Lx]mi)}

k
i=1

)
.

This observation has an important implication. Namely, if
the loss function to be minimized has a vertical but not a



horizontal representation, then a vertical decomposition of
the learning problem is arguably more self-evident than a
horizontal one, and vice versa. Strictly speaking, the non-
existence of an equivalent representation does of course not
exclude the existence of another loss function and aggrega-
tion operator producing the same predictions. Such alter-
natives, however, will normally be less obvious.

As an example of a loss function that lends itself to a hor-
izontal representation, consider a variant of the Hamming
loss based on the well-known Jaccard-index:

EJ(H(x), Lx) =
|H(x) ∩ Lx|
|H(x) ∪ Lx|

(15)

This variant avoids a certain disadvantage of the Hamming
loss, which treats relevant and non-relevant labels in a sym-
metric way even though the former are typically less nu-
merous than the latter, thereby producing a bias toward the
prediction of non-relevance. A natural generalization of
this measure is obtained by averaging (15) over the levels:

E∗J(H(x), Lx) =
1
k

k∑
i=1

∣∣[H(x)]mi
∩ [Lx]mi

∣∣∣∣[H(x)]mi
∪ [Lx]mi

∣∣ (16)

This extension, however, does not admit an equivalent ver-
tical representation, which is plausible since the Jaccard-
index is indeed a genuine set measure.

4.2 Rank Loss
The rank loss ER can be generalized in a canonical way by
the so-called C-index, which is commonly used as a mea-
sure of concordance in statistics [Gnen and Heller, 2005],
and which is essentially equivalent to the pairwise ranking
error introduced in [Herbrich et al., 2000]:

E∗R(f, Lx) =

∑
i<j

∑
(λ,λ′)∈Mi×Mj

S(f(x, λ), f(x, λ′))∑
i<j |Mi| × |Mj |

,

where Mi = {λ ∈ L |Lx(λ) = mi}. As can be seen,
the C-index is the fraction of labels that are correctly or-
dered by f(·): If label λ′ has a higher degree of member-
ship in Lx than λ, then the former should be ranked above
the latter. It is also worth mentioning that the C-index has
recently been proposed as a performance measure in the
problem of multipartite ranking [Fürnkranz et al., 2009],
and indeed, the problem here can be considered as a prob-
lem of that kind when interpreting {M0,M1, . . . ,Mk} as
an ordered partition of the label set L.

Other ranking losses proposed in the literature can be
generalized, too. For example, the one error checks
whether the top-ranked label is relevant or not:

E1E(f, Lx) =
{

0 arg maxλ∈L f(x, λ) ∈ Lx

1 otherwise

A natural generalization of this measure is obtained on the
basis of the degree of membership of the top-ranked label
in Lx:

E∗1E(f, Lx) = 1− Lx

(
arg max

λ∈L
f(x, λ)

)
.

5 Experimental Study
An experimental validation of the methods proposed in this
paper is not at all straightforward. First, since we intro-
duced a new machine learning problem, no benchmark data
sets can be found so far. Essentially for the same reason,

there are no existing methods to be used for comparison.
The two reduction schemes proposed in Section 3, vertical
and horizontal, are not easily comparable either, since these
are meta-techniques using different types of base learners.

For these reasons, we decided to focus on another aspect,
namely the general usefulness of the extended setting that
we proposed in this paper. More specifically, our idea is
to provide empirical evidence for the claim that allowing
a user to label instances on a graded scale does provide
useful extra information. In a sense, this claim is trivial
if a prediction on a graded scale is eventually needed. For
example, a reviewer recommendation (which can be seen as
an estimation of the quality of a paper) on an ordered scale
with labels such as “weak accept” and “strong accept” is
normally more useful than just a “yes” or “no” answer to
the question of acceptance.

However, we claim that training a learner on graded data
can be useful even if only a binary prediction is eventu-
ally requested. Intuitively, this claim derives from the sim-
ple observation that graded data provides more information
than binary data, which can be helpful, e.g., to determine
proper decision boundaries.

5.1 Data
In light of the aforementioned lack of benchmark data, we
used a data set from another research field, namely social
psychology [Abele and Stief, 2004].1 This data set, called
BeLa-E, consists of 1930 instances and 50 attributes. Each
instance corresponds to a graduate student. The first at-
tribute is the sex of the student and the second one the age.
Each of the other 48 attributes is a graded degree of impor-
tance of different properties of the future job, evaluated by
the student on an ordinal scale with 5 levels ranging from 1
(completely unimportant) to 5 (very important). Examples
of such properties include “reputation”, “safety”, “high in-
come” and “friendly colleagues”. Thus, every student was
asked how important he or she considers these properties
to be, and the student answered by assigning one of the
aforementioned 5 levels.

On the basis of this data set, we generated (graded) MLC
problems as follows: m of the above 48 attributes were ran-
domly selected as the set of class labels, while all remain-
ing m − 48 attributes plus the student’s sex and age were
taken as predictive features. The goal, then, is to train an
MLC model that takes the features as input and produces a
prediction of the relevance of the class labels as output.

Moreover, for every GMLC problem thus obtained, a bi-
nary version is produced by mimicking a student who is
forced to answer either yes or no: The graded levels 1 and
2 are mapped to “No”, the levels 4 and 5 are mapped to
“Yes”, and a coin is flipped for level 3.

5.2 Methods
As multilabel classifiers we used the IBLR-ML method
outlined in Section 3.4 and, moreover, binary rele-
vance learning with 10-nearest neighbor classification (BR-
10NN) as base learner. Two types of learning are distin-
guished, binary and graded: In binary learning, the original
data is first binarized as explained above (turning graded
into 0/1 answers). Then, the multilabel classifier is trained
on this data and used to make binary multilabel predic-
tions. In graded learning, a GMLC classifier is trained

1The data set is available online at http://www.
uni-marburg.de/fb12/kebi/research.



on the original (graded) data, using the horizontal reduc-
tion technique (for the BR learners automatically combined
with the vertical reduction). The graded relevance predic-
tions of these learners are then mapped to binary relevance
degrees at the very end, using the sameM −→ {0, 1}map-
ping (randomized for label 3) as used in binary learning
at the beginning. Eventually, both types of learning thus
produce binary relevance predictions and, therefore, can be
compared with each other.

5.3 Results
Each method was evaluated on a single problem in terms of
a 10-fold cross validation. These evaluations were then av-
eraged over a total number of 50 randomly generated prob-
lems. While averaging the performance over different data
sets is questionable in general, we consider it legitimate in
our case. In fact, all data sets are actually variants of the
same problem, and indeed, the standard deviation of the
performance was rather small throughout.

Table 1 summarizes the performance of the different
methods for m = 5 and m = 10 in terms of the Ham-
ming loss, subset zero-one loss, rank loss and C-index as
performance metrics. As can be seen, the use of graded
training data improves performance throughout, regardless
of the learning method and the loss function. Comparing
the respective mean values in terms of a paired t-test, the
differences are significant at a significance level of 5%.

Note that, as an extension of the rank loss, the C-index is
actually not intended for binary learning. We still included
it, as it only requires a predicted ranking and a ground-truth
labeling as input; thus, it can also be derived for the binary
learner. Of course, this learner is at a disadvantage here,
and indeed, the gains of the gradual learner for the C-index
are slightly higher than those for the rank loss.

6 Summary and Conclusions
In this paper, we have proposed an extension of conven-
tional multilabel classification, called graded multilabel
classification (GMLC). The basic idea of GMLC is that
the membership of an instance in a class or, say, the rel-
evance of a label for an instance, is not a matter of “yes”
or “no”. Instead, the membership is measured on a graded
scale, thus allowing for intermediate degrees of relevance.
Here, we have focused on an ordinal scale as a special case,
though numeric scales could in principle be used as well. In
any case, a generalization of this kind appears to be useful
and reasonable from a practical point of view.

Moreover, we have introduced two meta-techniques for
reducing GMLC problems to existing machine learning
problems, namely a vertical and a horizontal decomposi-
tion scheme. Whereas the former turns a GMLC problem
into a set of ordinal classification problems, one for each
label, the latter leads to solving a set of conventional mul-
tilabel problems, one for each level of the ordinal scale. In
the context of these two techniques, we have also discussed
the extension of MLC loss functions to the graded case.

Experimentally, we have shown that graded relevance
does provide useful extra information from a learning point
of view, even if only a binary prediction is requested. Col-
lecting real-world GMLC data and complementing this
study by further experiments is planned as future work. Be-
sides, the GMLC framework gives rise to a number of in-
teresting theoretical challenges, including but not limited to
the simultaneous, monotonicity-preserving solution of the
sub-problems produced by our reduction schemes.
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Table 1: Performance (mean and standard deviation) in the case of m = 5 labels (above) and m = 10 labels (below).
IBLR-ML BR-10NN

binary graded binary graded
Hamming loss 0.245±0.048 0.219±0.042 0.220±0.051 0.213±0.052

rank loss 0.190±0.062 0.180±0.057 0.328±0.115 0.310±0.104
C-index 0.204±0.047 0.183±0.045 0.381±0.089 0.361±0.080

subset zero-one loss 0.736±0.093 0.695±0.078 0.857±0.051 0.808±0.070
Hamming loss 0.225±0.017 0.207±0.018 0.230±0.018 0.217±0.018

rank loss 0.169±0.029 0.157±0.021 0.225±0.040 0.154±0.020
C-index 0.190±0.012 0.178±0.019 0.237±0.011 0.171±0.016

subset zero-one loss 0.908±0.028 0.875±0.042 0.913±0.022 0.893±0.034


