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Abstract

Rule learning is known for its descriptive and
therefore comprehensible classification models
which also yield good class predictions. For
different classification models, such as decision
trees, a variety of techniques for obtaining good
probability estimates have been proposed and
evaluated. However, so far, there has been no
systematic empirical study of how these tech-
niques can be adapted to probabilistic rules and
how these methods affect the probability-based
rankings. In this paper we apply several ba-
sic methods for the estimation of class mem-
bership probabilities to classification rules. We
also study the effect of a shrinkage technique for
merging the probability estimates of rules with
those of their generalizations. Finally, we com-
pare different ways of combining probability es-
timates from an ensemble of rules. Our results
show that for probability estimation it is bene-
ficial to exploit the fact that rules overlap (i.e.,
rule averaging is preferred over rule sorting), and
that individual probabilities should be combined
at the level of rules and not at the level of theo-
ries.

1 Introduction

The main focus of symbolic learning algorithms such as de-
cision tree and rule learners is to produce a comprehensible
explanation for a class variable. Thus, they learn concepts
in the form of crisp IF-THEN rules. On the other hand,
many practical applications require a finer distinction be-
tween examples than is provided by their predicted class
labels. For example, one may want to be able to provide
a confidence score that estimates the certainty of a predic-
tion, to rank the predictions according to their probability
of belonging to a given class, to make a cost-sensitive pre-
diction, or to combine multiple predictions.

All these problems can be solved straight-forwardly if
we can predict a probability distribution over all classes in-
stead of a single class value. A straight-forward approach
to estimate probability distributions for classification rules
is to compute the fractions of the covered examples for each
class. However, this naive approach has obvious disadvan-
tages, such as that rules that cover only a few examples may
lead to extreme probability estimates. Thus, the probability
estimates need to be smoothed.

There has been quite some previous work on probabil-
ity estimation from decision trees (so-called probability-

estimation trees (PETS)). A very simple, but quite pow-
erful technique for improving class probability estimates is
the use of m-estimates, or their special case, the Laplace-
estimates [Cestnik, 1990]. It has been shown that unpruned
decision trees with Laplace-corrected probability estimates
at the leaves produce quite reliable decision tree estimates
[Provost and Domingos, 2003]. A recursive computation
of the m-estimate, which uses the probability disctribution
at level [ as the prior probabilities for level [ + 1, was pro-
posed in [Ferri et al., 2003]. In [Wang and Zhang, 2006],
a general shrinkage approach was used, which interpolates
the estimated class distribution at the leaf nodes with the
estimates in interior nodes on the path from the root to the
leaf.

An interesting observation is that, contrary to classifi-
cation, class probability estimation for decision trees typi-
cally works better on unpruned trees than on pruned trees.
The explanation for this is simply that, as all examples in
a leaf receive the same probability estimate, pruned trees
provide a much coarser ranking than unpruned trees. In
[Hiillermeier and Vanderlooy, 2009], a simple but elegant
analysis of this phenomenon was provided, which shows
that replacing a leaf with a subtree can only lead to an
increase in the area under the ROC curve (AUC), a com-
monly used measure for the ranking capabilities of an al-
gorithm. Of course, this only holds for the AUC estimate
on the training data, but it still may provide a strong indica-
tion why unpruned PETs typically also outperform pruned
PETs on the test set.

Despite the amount of work on probability estimation for
decision trees, there has been hardly any systematic work
on probability estimation for rule learning. Despite their
obvious similarility, we nevertheless argue that a separate
study of probability estimates for rule learning is necessary.

A key difference is that in the case of decision tree learn-
ing, probability estimates will not change the prediction for
an example, because the predicted class only depends on
the probabilities of a single leaf of the tree, and such local
probability estimates are typically monotone in the sense
that they all maintain the majority class as the class with
the maximum probability. In the case of rule learning, on
the other hand, each example may be classified by multi-
ple rules, which may possibly predict different classes. As
many tie breaking strategies depend on the class probabili-
ties, a local change in the class probability of a single rule
may change the global prediction of the rule-based classi-
fier, even if the order of all local estimates is maintained.

Because of such non-local effects, it is not evident that
the same methods that work well for decision tree learn-
ing will also work well for rule learning. Indeed, as we
will see in this paper, our conclusions differ from those that



have been drawn from similar experiments in decision tree
learning. For example, the above-mentioned argument that
unpruned trees will lead to a better (training-set) AUC than
pruned trees, does not straight-forwardly carry over to rule
learning, because the replacement of a leaf with a subtree
is a local operation that only affects the examples that are
covered by this leaf. In rule learning, on the other hand,
each example may be covered by multiple rules, so that
the effect of replacing one rule with multiple, more specific
rules is less predictable. Moreover, each example will be
covered by some leaf in a decision tree, whereas each rule
learner needs to induce a separate default rule that covers
examples that are covered by no other rule.

The rest of the paper is organized as follows: In Sec-
tion 2 we briefly describe the basics of probabilistic rule
learning and discuss the used estimation techniques used
for rule probabilities. In Section 3 we describe the rule
learning algorithm that we used in our experiments, con-
trast two approaches for the generation of a probabilistic
rule set, and describe how they are used for classification.
Experimental results, which compare the different proba-
bility estimation techniques in these two scenarios, are de-
scribed in Section 4. We then discuss four techniques for
obtaining rule probabilities from a bagging ensemble (Sec-
tion 5), and compare them experimentally in Section 6. In
the end, we summarize our conclusions in Section 7.!

2 Rule Learning and Probability Estimation

This section is divided into two parts. The first one de-
scribes briefly the properties of conjunctive classification
rules and of its extension to a probabilistic rule. In the sec-
ond part we introduce the probability estimation techniques
used in this paper. These techniques can be divided into ba-
sic methods, which can be used stand-alone for probability
estimation, and the meta technique shrinkage, which can
be combined with any of the techniques for probability es-
timation.

2.1 Probabilistic Rule Learning

In classification rule mining one searches for a set of rules
that describes the data as accurately as possible. As there
are many different generation approaches and types of gen-
erated classification rules, we do not go into detail and re-
strict ourselves to conjunctive rules. The premise of these
rules consists of a conjunction of number of conditions, and
in our case, the conclusion of the rule is a single class value.
So a conjunctive classification rule r has basically the fol-
lowing form:

conditiony A - -+ A condition),| = class (1)

The size of a rule |r| is the number of its conditions. Each
of these conditions consists of an attribute, an attribute
value belonging to its domain and a comparison determined
by the attribute type. For our purpose, we consider only
nominal and numerical attributes. For nominal attributes,
this comparison is a test of equality, whereas in the case
of numerical attributes, the test is either less (or equal)
or greater (or equal). If all conditions are met by an in-
stance, the instance is covered by the rule (r O z) and the
class value of the rule is predicted for the instance. Conse-
quently, the rule is called a covering rule for this instance.

"Parts of this paper have previously appeared as [Sulzmann
and Fiirnkranz, 2009].

This in mind, we can define some statistical values of
a data set which are needed for later definitions. A data

set consists of |C| classes and n instances from which n®
belong to the class c respectively (n = Zgl n®). A rule r
covers n, instances which are distributed over the classes,
so that n¢ instances belong to class ¢ (n, = ZLC:‘l ne).

A probabilistic rule r is an extension of a classification
rule, which does not only predict a single class value, but
a set of class probabilities, which form a probability dis-
tribution over the classes. This probability distribution es-
timates all probabilities that a covered instance belongs to
any of the class in the data set, so we get one class probabil-
ity per class. The example is then classified with the most
probable class. The probability that an instance x covered
by rule r belongs to ¢ can be viewed as a conditional prob-
ability Pr(c|r D z). Thus the set of class probabilities can
be noted as vector of probabilities sorted by the class order-

ing:
ﬁr(r Dx) = (Pr(cilr 2 x),--- ,Pr(gelr 2 2)) (2)

On the vector Pr(r D ), abbreviated Pr,(z), we define
the following maximum function

max (ﬁr,(x)) = max Pr(c|r D x). (3)
ce

On sets of class probability vectors U?Zl Pr;(x) we define

the average function

k
koo o 1 -
avg (Uj—lPrj (m)) =7 ZPrj(x) “)
and the multiplication

mult (Uj_fy(m)) = (Hj_o Pr(ci|r; D ), -,
k

szo Pr(cic||r; 2 a:)) (5)

Obviously the results of these functions are also class prob-
ability vectors.

In the next section, we discuss some approaches for es-
timating these class probabilities.

2.2 Basic Probability Estimation

In this subsection we will review three basic methods for
probability estimation. Subsequently, in Section 2.3, we
will describe a technique known as shrinkage, which is
known from various application areas, and show how this
technique can be adapted to probabilistic rule learning.

All of the three basic methods we employed, calculate
the relation between the number of instances covered by the
rule n,. and the number of instances covered by the rule but
also belong to a specific class ny.. The differences between
the methods are the minor modifications of the calculation
of this relation.

The simplest approach to rule probability estimation di-
rectly estimates a class probability distribution of a rule
with the fraction of examples that belong to each class.

nC
Pr(clr2z)=—" (6)

naive Ny
This naive approach has several well-known disadvantages,
most notably that rules with a low coverage may be lead
to extreme probability values. For this reason, the use of



the Laplace- and m-estimates was suggested in [Cestnik,
1990].

The Laplace estimate modifies the above-mentioned re-
lation by adding one additional instance to the counts ng
for each class c¢. Hence the number of covered instances n,.
is increased by the number of classes |C/.

ne 41
Lal[?lgce(c‘r 2 x) = Ny + ‘C| M
It may be viewed as a trade-off between Prye(c|r 2 )
and an a priori probability of Pr(c) = 1/|C| for each class.
Thus, it implicitly assumes a uniform class distribution.

The m-estimate generalizes this idea by making the de-
pendency on the prior class distribution explicit, and intro-
ducing a parameter m, which allows to trade off the influ-
ence of the a priori probability andPrve.

né +m - Pr(c)

Pr(clr D z) =
m Ny +m

®)
The m-parameter may be interpreted as a number of ex-
amples that are distributed according to the prior proba-
bility, which are added to the class frequencies n;.. The
prior probability is typically estimated from the data using
Pr(c) = n°/n (but one could, e.g., also use the above-
mentioned Laplace-correction if the class distribution is
very skewed). Obviously, the Laplace-estimate is a special
case of the m-estimate with m = |C| and Pr(c) = 1/|C.

2.3 Shrinkage

Shrinkage is a general framework for smoothing probabil-
ities, which has been successfully applied in various re-
search areas.’Its key idea is to “shrink” probability esti-
mates towards the estimates of its generalized rules rg,
which cover more examples. This is quite similar to the
idea of the Laplace- and m-estimates, with two main dif-
ferences: First, the shrinkage happens not only with respect
to the prior probability (which would correspond to a rule
covering all examples) but interpolates between several dif-
ferent generalizations, and second the weights for the trade-
off are not specified a priori (as with the m-parameter in
the m-estimate) but estimated from the data.

In general, shrinkage estimates the probability Pr(c|r 2
x) as follows:

|7l
P = k
Shrfnk(dr D) Z wy, Pr(c|rg) )
k=0
where w” are weights that interpolate between the proba-

bility estimates of the generalized rules 7;. In our imple-
mentation, we use only generalizations of a rule that can be
obtained by deleting a final sequence of conditions. Thus,
for a rule with length |r|, we obtain |r| + 1 generalizations
r1, where rq is the rule covering all examples, and Tlp| =T

The weights w® can be estimated in various ways. We
employ a shrinkage method proposed in [Wang and Zhang,
2006] which is intended for decision tree learning but can
be straight-forwardly adapted to rule learning. The authors
propose to estimate the weights w¥* with an iterative proce-
dure which averages the probabilities obtained by remov-
ing training examples covered by this rule. In effect, we
obtain two probabilities per rule generalization and class:
the removal of an example of class c leads to a decreased

2Shrinkage is, e.g., regularly used in statistical language pro-
cessing [Chen and Goodman, 1998; Manning and Schiitze, 1999]

probability Pr_(c|ry 2 z), whereas the removal of an ex-
ample of a different class results in an increased probabil-
ity Pry (c|rx 2 x). Weighting these probabilities with the
relative occurrence of training examples belonging to this
class we obtain a smoothed probability

Pr (¢rp 22)=

. D)
Smoothed Pr (C"I"k - 1.) (10)

F |
3 |30

L ‘Pry(cry 2x) (A1)
Ny
Using these smoothed probabilities, this shrinkage
method computes the weights of these nodes in linear time
(linear in the number of covered instances) by normalizing
the smoothed probabilities separately for each class.

k _ PrSmoothed(drk ) -7/')
We = S
Zizo PrSmoothed(dTi 2 ff)

Multiplying the weights with their corresponding prob-
ability we obtain “shrinked” class probabilities for the in-
stance.

Note that all instances which are classified by the same
rule receive the same probability distribution. Therefore
the probability distribution of each rule can be calculated
in advance.

(12)

3 Rule Learning Algorithm

For the rule generation we employed the rule learner Rip-
per [Cohen, 1995], arguably one of the most accurate rule
learning algorithms today. We used Ripper both in ordered
and in unordered mode:

Ordered Mode: In ordered mode, Ripper learns rules for
each class, where the classes are ordered according
to ascending class frequencies. For learning the rules
of class c;, examples of all classes c; with j > i are
used as negative examples. No rules are learned for
the last and most frequent class, but a rule that implies
this class is added as the default rule. At classification
time, these rules are meant to be used as a decision
list, i.e., the first rule that fires is used for prediction.

Unordered Mode: In unordered mode, Ripper uses a one-
against-all strategy for learning a rule set, i.e., one set
of rules is learned for each class c;, using all examples
of classes c;,j # 4 as negative examples. At predic-
tion time, all rules that cover an example are consid-
ered and the rule with the maximum probability esti-
mate is used for classifying the example. If no rule
covers the example, it classified by the default rule
predicting the majority class.

We used JRip, the Weka [Witten and Frank, 2005] imple-
mentation of Ripper. Contrary to William Cohen’s original
implementation, this re-implementation does not support
the unordered mode, so we had to add a re-implementation
of that mode.> We also added a few other minor modifi-
cations which were needed for the probability estimation,
e.g. the collection of statistical counts of the sub rules.

In addition, Ripper (and JRip) can turn the incremen-
tal reduced error pruning technique [Fiirnkranz and Wid-
mer, 1994; Fiirnkranz, 1997] on and off. Note, however,

3Weka supports a general one-against-all procedure that can
also be combined with JRip, but we could not use this because it
did not allow us to directly access the rule probabilities.



that with turned off pruning, Ripper still performs pre-
pruning using a minimum description length heuristic [Co-
hen, 1995]. We use Ripper with and without pruning and in
ordered and unordered mode to generate four set of rules.
For each rule set, we employ several different class proba-
bility estimation techniques.

In the test phase, all covering rules are selected for a
given test instance. Using this reduced rule set we deter-
mine the most probable rule. For this purpose we select the
most probable class of each rule and use this class value as
the prediction for the given test instance and the class prob-
ability for comparison. Ties are solved by predicting the
least represented class. If no covering rules exist the class
probability distribution of the default rule is used.

4 Experimental Results

4.1 Experimental Setup

We performed our experiments within the WEKA frame-
work [Witten and Frank, 2005]. We tried each of the four
configuration of Ripper (unordered/ordered and pruning/no
pruning) with 5 different probability estimation techniques,
Naive (labeled as Precision), Laplace, and m-estimate with
m € {2,5,10}, both used as a stand-alone probability es-
timate (abbreviated with B) or in combination with shrink-
age (abbreviated with S). As a baseline, we also included
the performance of pruned or unpruned standard JRip ac-
cordingly. Our unordered implementation of JRip using
Laplace stand-alone for the probability estimation is com-
parable to the unordered version of Ripper (Cohen, 1995),
which is not implemented in JRip.

We evaluated these methods on 33 data sets of the UCI
repository [Asuncion and Newman, 2007] which differ in
the number of attributes (and their categories), classes and
training instances. As a performance measure, we used
the weighted area under the ROC curve (AUC), as used
for probabilistic decision trees in [Provost and Domingos,
2003]. Its key idea is to extend the binary AUC to the multi-
class case by computing a weighted average the AUCs
of the one-against-all problems N., where each class c is
paired with all other classes:

AUC(N) =Y

ceC
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] AUC(YC) (3)

For the evaluation of the results we used the Friedman
test with a post-hoc Nemenyi test as proposed in [Demsar,
2006]. The significance level was set to 5% for both tests.
We only discuss summarized results here, detailed result
tables can be found in [Sulzmann and Fiirnkranz, 2009] and
[Sulzmann and Fiirnkranz, 2010].

4.2 Ordered Rule Sets

In the first two test series, we investigated the ordered ap-
proach using the standard JRip approach for the rule gener-
ation, both with and without pruning. The basic probability
methods were used standalone (B) or in combination with
shrinkage (S).

The Friedman test showed that in both test series, the em-
ployed combinations of probability estimation techniques
showed significant differences. Considering the CD chart
of the first test series (Figure 1(a)), one can identify three
groups of equivalent techniques. Notable is that the two
best techniques, the m-Estimate used stand-alone with
m = 2 and m = 5 respectively, belong only to the best
group. These two are the only methods that are signifi-
cantly better than the two worst methods, Precision used

stand-alone and Laplace combined with shrinkage. On the
other hand, the naive approach seems to be a bad choice
as both techniques employing it rank in the lower half.
However our benchmark JRip is positioned in the lower
third, which means that the probability estimation tech-
niques clearly improve over the default decision list ap-
proach implemented in JRip.

Comparing the stand-alone techniques with those em-
ploying shrinkage one can see that shrinkage is outper-
formed by their stand-alone counterparts. Only Precision
is an exception as shrinkage yields increased performance
in this case. In the end shrinkage is not a good choice for
this scenario.

The CD-chart for ordered rule sets with pruning (Figure
1(b)) features four groups of equivalent techniques. No-
table are the best and the worst group which overlap only
in two techniques, Laplace and Precision used stand-alone.
The first group consists of all stand-alone methods and JRip
which dominates the group strongly covering no shrinkage
method. The last group consists of all shrinkage methods
and the overlapping methods Laplace and Precision used
stand-alone. As all stand-alone methods rank before the
shrinkage methods, one can conclude that they outperform
the shrinkage methods in this scenario as well. Ripper per-
forms best in this scenario, but the difference to the stand-
alone methods is not significant.

4.3 Unordered Rule Sets

Test series three and four used the unordered approach em-
ploying the modified JRip which generates rules for each
class. Analogous to the previous test series the basic meth-
ods are used as stand-alone methods or in combination with
shrinkage (left and right column respectively). Test series
three used no pruning while test series four did so. The re-
sults of the Friedman test showed that the techniques of test
series three and test series four differ significantly.

Regarding the CD chart of test series three (Figure 1(c)),
we can identify four groups of equivalent methods. The
first group consists of all stand-alone techniques, except for
Precision, and the m-estimates techniques combined with
shrinkage and m = 5 and m = 10, respectively. Whereas
the stand-alone methods dominate this group, m = 2 being
the best representative. Apparently these methods are the
best choices for this scenario. The second and third con-
sist mostly of techniques employing shrinkage and overlap
with the worst group in only one technique. However our
benchmark JRip belongs to the worst group being the worst
choice of this scenario. Additionally the shrinkage methods
are outperformed by their stand-alone counterparts.

The CD chart of test series four (Figure 1(d)) shows sim-
ilar results. Again four groups of equivalent techniques
groups can be identified. The first group consists of all
stand-alone methods and the m-estimates using shrinkage
and m = 5 and m = 10 respectively. This group is dom-
inated by the m-estimates used stand-alone with m = 2,
m = 5 or m = 10. The shrinkage methods are distributed
over the other groups, again occupying the lower half of the
ranking. Our benchmark JRip is the worst method of this
scenario.

4.4 Unpruned vs. Pruned Rule Sets

Rule pruning had mixed results, which are briefly summa-
rized in Table 1. On the one hand, it improved the results
of the ordered approach, on the other hand it worsened the
results of the unordered approach. In any case, in our ex-
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Figure 1: Critical distance charts of ordered rule sets ((a) and (b)) and unordered rule sets ((c) and (d))

periments, contrary to previous results on PETs, rule prun-
ing was not always a bad choice. The explanation for this
result is that in rule learning, contrary to decision tree learn-
ing, new examples are not necessarily covered by one of the
learned rules. The more specific rules become, the higher
is the chance that new examples are not covered by any of
the rules and have to be classified with a default rule. As
these examples will all get the same default probability, this
is a bad strategy for probability estimation. Note, however,
that JRip without pruning, as used in our experiments, still
performs an MDL-based form of pre-pruning. We have not
yet tested a rule learner that performs no pruning at all, but,
because of the above deliberations, we do not expect that
this would change the results with respect to pruning.

5 Probability Estimates from Rule
Ensembles

Instead of trying to improve the probability estimates for
each individual leaf, one can also resort to averaging mul-
tiple estimates, thereby reducing the variance of the re-
sulting probability estimates. For example, a technique
based on bagging multiple unpruned decision trees was
used in [Domingos, 1999] to obtain improved probability
estimates, which were subsequently used for cost-sensitive
classification. An adaptation of this technique to rule learn-
ing again has the effect that an example may be covered by
a varying number of rules, whereas in decision tree learn-
ing, each example will be covered by exactly s leafs (where
s is the number of trees learned).

For investigating the performance ensemble-based prob-
ability estimates, we combined our rule learner with bag-
ging [Breiman, 1996]. We generated s bootstrap samples
S1,- -+, S5 by repeately drawing n instances with replace-
ment. The rule algorithm described in Section 3 was ap-
plied to each sampled data set s; obtaining s classifiers
Cq,- - ,C and their corresponding rule sets Ry, - - - , Rs.
The probability estimation for each is computed using the
previously introduced basic estimation methods.

For prediction, we determine the covering rules of each
sampled rule set R; for a given example x

Ri(x) = {r € Ri|r 2 «} (14)

Let C'ov;(z) denote the set of all class probability distribu-
tions that originate from a rule in the set of covering rules

Cov;(x) = {lfrr(:c)h € Rl(m)} . (15)

From this set of class probability distributions of the cov-
ering rules, we try to estimate a class probability distribu-
tion for the given example x. For this purpose we have to
decode the probability estimations of these covering rules
ﬁrr(x) into a single normalized global class probability
distribution P;'rglobal (z).

For our approach we considered four decoding methods.
The first three methods have in common that they average
the class probability distribution of (some of) the covering
rules.

Best Rule: Only the most confident covering rule Pr;(z)
of each covering rule set R;(x) is determined.

Pri(z) = argmax (ﬁr(x))
Pr(z)eCov;

(16)

Afterwards the class probability distributions of these
rules are averaged and the result is normalized:

avg (ﬁrl, e ,ﬁrs)
o )]
1

Macro Averaging: All covering rules are determined
and their class probability distributions are macro-
averaged in two steps. First the class probability dis-
tributions C'ov; () of each covering rule set R;(z) are
averaged and normalized:

P_’rglobal(g]) = (17)

> avg (Cov;(x))
PI‘i = .

lavg (Covi(x))]4
These local class probabilities are then averaged as
above (17).

Micro Averaging: All covering rules are determined
and their class probability distributions are micro-
averaged. Essentially, this means that all learned rules
are pooled, and the average is formed over the result-
ing set set of rules:

_avg(Covy(x)U--- U Covy(x))
llavg (Covi(z) U - - - U Covg(x))|;
19)
Bayesian Decoding: All covering rules are pooled as
above, but their class probability distributions are mul-

tiplied with each other and with the vector of the a
priori class probabilities

PTI‘;:)MO?" = (PI‘(Cl), T 7PI‘(C‘0|) :

(18)

PT‘I‘global (x)



Table 1: Unpruned vs. pruned rule sets: Win/Loss for ordered (top) and unordered (bottom) rule sets

JRip | Precision | Laplace M2 M5 M 10
Win 26 (23 19 |20 19|18 2019 20|19 20
Loss 7 10 14 (13 14|15 13|14 13|14 13
Win 26 | 21 9 8 8 8 8 8 8 8 6
Loss 7 12 24 |25 25|25 25|25 25|25 27

Thus ﬁrglobal (x) is calculated as follows

mult (U;zl Cov;(z) U {ﬁrprioT.})

PI‘global (LIJ) - ‘

In all cases, the resulting class probability distribution
Prgiobei(z) is used for the prediction. For this purpose

the most probable class according to P_'rglobal (x) is selected
and this class value is used as the prediction for the given
test instance x. Ties are solved by predicting the least rep-
resented class. If no covering rules (Cov; (x) = 0) exist for
a sampled rule set R; the class probability distribution of
the default rule is used accordingly.

6 Results on Ensemble-Based Probability
Estimates

6.1 Experimental Setup

The above methods were integrated into the framework de-
scribed in Section 4.1. For sampling, we employed the un-
supervised random sampling of WEKA for the generation
of the bootstrap samples and applied the Bagging imple-
mentation of WEKA to JRip. In accordance with the re-
sults obtained above, we only used unordered rule sets for
these experiments because these produce better probability
estimates than ordered rule sets. Furthermore we know that
the unpruned rule sets perform better for the Laplace- and
m-estimates than pruned rule sets if the rule sets are gen-
erated by the unordered JRip. For Precision the opposite
is true. So we employed these basic probability estima-
tion techniques on either unpruned or pruned rule sets ac-
cording to these observations. As the employed shrinkage
method worsened the probability estimation we abstained
from using shrinkage in these experiments. All previously
mentioned decoding methods - Best rule, Macro and Mi-
cro Averaging, and Bayesian Decoding - were employed.
So we computed all combinations of the basic probability
estimation and decoding methods on a different number of
bootstrap samples - 10, 20, 50 and 100 samples accord-
ingly. These methods were compared to the default config-
uration of JRip (pruned, ordered rule sets) and to its bagged
version (with or without pruning) using the same bootstrap
samples.

All methods were evaluated on the 33 previously used
data sets of the UCI repository. As a performance mea-
sure, we used the weighted area under the ROC curve
(AUC) also. For our comparison we calculated the average
weighted AUC over all data sets for all combinations (com-
bining a probability estimation technique and a decoding
method to a given number of boostrap samples), the sum-
marized results are depicted in Figure 2. Detailed results
can be found in [Sulzmann and Fiirnkranz, 2010].

6.2 Comparison to JRip

In our experiments we compared JRip and its bagged ver-
sions to the basic probability estimation techniques em-

’mult <Uf:1 Covi(z) U {ﬁrp”or}) H1
(20)

ploying the four decoding methods. Figure 2 shows the
results of unpruned bagged JRip and the basic probability
estimation techniques. We omitted to depict the results of
JRip and the pruned bagged JRip because they both had
a worse performance than the unpruned bagged version
which has the worst performance of the depicted methods.
The weighted AUC of their best representative, unpruned
bagged JRip, was always at least two absolute percentage
points lower than the weighted AUC of the basic probabil-
ity estimation techniques for all decoding methods and all
numbers of samples. So we can conclude that the perfor-
mance of the basic probability estimation techniques im-
prove over the default probability estimation integrated in
JRip. As this observation was also made in the basic rule
learning experiments, we see our approach reconfirmed.

6.3 Comparison of the base probability
estimation techniques

Each of the results of Figure 2 is the average perfor-
mance over several different base probability estimation
techniques: Precision applied to pruned rule sets and the
Laplace and the m-estimate (m € {2,5,10}) applied to
unpruned rule sets. The applied decoding methods seem
to have only a small impact on the ranking (according the
weighted AUC) of the basic probability estimation tech-
niques. Especially for a higher number of bootstrap sam-
ples, 50 and 100, these rankings are always the same -
Precision having the best performance followed by the m-
estimate using m = 2, m = 5, or m = 10 and the Laplace
estimate in this order. For the smaller numbers of sam-
ples, 10 and 20, the ranking is a little bit more dynamic.
Although the best two methods, m-estimate with m = 2
and m = 5 (in this order), and the worst method, Laplace
estimate, are always the same, the methods in the center,
Precision and the m-estimate using m = 10, switch places
dependent on the decoding methods. So we can conclude
that the m-estimate using m = 2 is the best choice for a
low number of samples just as Precision is the best choice
for a higher number of samples. For all probability esti-
mation techniques holds that an increase in the number of
samples leads to an improvement in the weighted AUC but
the gain is a bit lower than the gain of the bagged JRip.

6.4 Comparison of the decoding methods

In this section, we want to compare the four employed de-
coding methods: Best Rule, Macro and Micro Averaging,
and Bayesian Decoding. For this purpose we calculated
the average weighted AUC over all data sets for all com-
binations obtained by combining a probability estimation
technique, a decoding method and a number of bootstrap
samples. Afterwards, we determined on this data the aver-
age rank of each decoding method (Table 2) and used this
information for a Friedman test with a significance of 5%.
According to this test, the decoding methods differ signif-
icantly, so we applied a post-hoc Nemenyi test which is
depicted in a CD chart (Figure 3).



Table 2: Decoding Methods: Count of each rank and the

average rank

Ranked Average
Decoding Method Ist 2nd 3rd 4th Rank
Best Rule 0 0 4 16 3.80
Macro Averaging 0 17 3 0 2.15
Micro Averaging 20 0 0 0 1.00
Bayesian Decoding 0 3 13 4 3.05

Obviously, Micro Averaging is the best decoding meth-
ods in our experiments as it always placed first according
to the average weighted AUC. This observation is recon-
firmed by the CD chart since the Micro Averaging is the
only member of the best group of methods. Macro Av-
eraging and Bayesian Decoding do not differ significantly
being both in the second best group of decoding methods.
Nevertheless Bayesian Decoding is also in the worst group
together with Best Rule which is the worst choice in our
experiments.

The observed ranking of the decoding methods can be at-
tributed to the individual exploitation of the covering rules.
As the decoding method Best Rule only uses the best rule
of each bootstrap sample, a great deal of evidence has no
influence on the probability estimation. Thus, it is not sur-
prising that Best Rule ranks behind the methods that make
better use of the ensemble.

The methods Macro and Micro Averaging both average
the probability distributions of a number of covering rules
but their averaging approaches differ. So the influence of
a high evidence for a class in a sampled rule set is also
different for the two methods. For Micro Averaging the
aforementioned evidence has a direct effect on resulting
probability distribution as all covering rules have the same
weight in its calculation. As our rule sets only have a low
redundancy, this effect is desirable. For Macro Averaging
a high evidence in a sampled rule set influences only the
probability distribution of this bootstrap sample. So the
number of covering rules has no effect on the global prob-
ability distribution. As Macro Averaging partially discards
the available information Micro Averaging should perform
better than Macro Averaging as observed in our experi-
ments.

Bayesian Decoding uses all the information contained in
the covering rules as Micro Averaging does. These two
methods differ only the way how they combine the infor-
mation of the covering rule, averaging or multiplying their
probability distributions. The multiplication used in the
Bayesian approach has a tendency to prefer a number of
medium probabilities to a balanced number of low and high
probabilities. This bias has a negative effect on the calcu-
lation of the global probability distribution. Averaging is
more desirable as high probabilities have a greater impact
on its calculation.

Critical Distance

4 3 2 1
L. 1 . |
Macro Averaging

Figure 3: CD chart of the decoding methods

Best Rule
Bayesian Decoding

7 Conclusions

The most important result of our study is that probability
estimation is clearly an important part of a good rule learn-
ing algorithm. The probabilities of rules induced by JRip
can be improved considerably by simple estimation tech-
niques. In unordered mode, where one rule is generated for
each class, JRip is outperformed in every scenario. On the
other hand, in the ordered setting, which essentially learns
decision lists by learning subsequent rules in the context
of previous rules, the results were less convincing, giving
a clear indication that the unordered rule induction mode
should be preferred when a probabilistic classfication is de-
sirable.

Among the tested probability estimation techniques, the
m-estimate typically outperformed the other methods in
our version of the JRip algorithm. The superiority of the
m-estimate was not sensitive to the choice of its parame-
ter. When combined with an ensemble-based approach, the
m-estimate maintained its superiority for smaller number
of bootstrap samples, but typically lower value of m per-
formed better. For higher numbers of bootstrap samples,
precision, which corresponds to a value of m = 0, outper-
formed the other methods. Thus, it seems to be the case
that the use of the m-estimate primarily helps to reduce the
variance of the probability estimates.

The employed shrinkage method did, in general, not im-
prove the simple estimation techniques. It remains to be
seen whether alternative ways of setting the weights could
yield superior results. Rule pruning did not produce the bad
results that are known from ranking with pruned decision
trees, presumably because unpruned, overly specific rules
will increase the number of uncovered examples, which in
turn leads to bad ranking of these examples.

Ensemble-based probability estimation based on a bag-
ging approach further improved the probability estimates.
The improvement increases with the number of bootstrap
samples. In every case, the probabilistic approach outper-
formed Bagged JRip using the same number of bootstrap
samples. Amongst the employed decoding methods, Micro
Averaging of the probability distributions of all covering
rules was without exceptions superior to the other meth-
ods, indicating that the predictions of rule-based ensembles
should be combined at the level of individual rules and not
at the level of theories.
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