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Abstract
Map matching is a fundamental operation in
many applications such as traffic analysis and
location-aware services, the killer apps for
ubiquitous computing. In the past, several
map matching approaches have been proposed.
Roughly speaking they can be categorized into
four groups: geometric, topological, probabilis-
tic, and other advanced techniques. Surprisingly,
kernel methods have not received attention yet
although they are very popular in the machine
learning community due to their solid mathemat-
ical foundation, tendency toward easy geometric
interpretation, and strong empirical performance
in a wide variety of domains. In this paper, we
show how to employ kernels for map matching.
Specifically, ignoring map constraints, we first
maximize the consistency between the similarity
measures captured by the kernel matrices of the
trajectory and relevant part of the street map. The
resulting relaxed assignment is then ”rounded”
into an hard assignment fulfilling the map con-
straints. On synthetic and real-world trajecto-
ries, we show that kernels methods can be used
for map matching and perform well compared to
probabilistic methods such as HMMs.

1 Introduction
Map matching is a fundamental operation for many real-
world applications that are currently changing how we
as a society use computers in daily life. Following
[Mitchell, 2009]: after decades of analysing ”historical”
data, ’location-based services’ are a major driving force
for analysing ”real-time” and ”real-space” data that record
personal activities, conversations, and movements in an
attempt to improve human health, guide traffic, and ad-
vance the scientific understanding of human behaviour.
Therefore, it is not surprising that map matching — the
problem of mapping a temporal sequence of coordinates
onto a given network — has received a lot of attention.
Roughly speaking existing approaches for map matching
can be categorized into four groups: geometric, topologi-
cal,probabilistic, and other advanced techniques. Surpris-
ingly, however, kernel methods such as support vector ma-
chine and Gaussian processes have not received attention
yet although they are very popular in the machine learn-
ing community due to their solid mathematical foundation,
tendency toward easy geometric interpretation, and strong
empirical performance in a wide variety of domains. In a

Figure 1: illustration of the map matching problem: Given
a graph G = (V,E), denoted as gray edges, and a trajec-
tory T = {p1, p2, ..., pn}, denoted as red squares, find the
ground truth path (dashed line) starting from T .

nutshell, kernel methods first process a dataset into a kernel
matrix that roughly expresses the idea that two data points
are ”equivalent as far as some function f of the data can
tell”. By representing the data in terms of a kernel ma-
trix, the data can be of various types, and also heteroge-
neous types such as trees and graphs. This makes kernel ap-
proaches very flexible. In a second step, a variety of kernel
algorithms that have been developed can be used to analyse
the data, using only the information contained in the kernel
matrix. Kernels are, also, readily extendible therefore ev-
ery kernel matrix provides an opportunity to integrate its
knowledge with existing kernels in the field. An investiga-
tion of using kernel methods for map matching motivated
by their well-known strength was the seed that grew into
our proposal for kernelized map matching. Through this
article, we make the following contributions in map match-
ing research:

1. Establishing a link between ’map matching’ and ’ker-
nel methods’.

2. Specifically building and investigating an instantiation
of this link: a simple yet effective kernelized map
matching approach, called ’Kernelized Map Match-
ing’ (KMM).

3. To do so, we also develop a simple kernel to capture
spatio-temporal correlations under one umbrella.

Specifically, triggered by the observation that matching a
trajectory of coordinates would be easy if the observed co-
ordinates were noise-free — the coordinates would simply
constitute the solution — one may propose to treat the map
matching problem as a regression problem. That is, we
treat a trajectory as a function t for which we observe a



(a) KMM: over a roundabout (b) KMM: over grid structure (c) KMM: Robustness to noise

Figure 2: illustrations of KMM’s performance on challenging real-world situations. The red points show the input trajectory
and the blue points the output path by KMM. In all three cases, KMM recovers the exact groundtruth paths. (coloured)

sequence of noisy values, the coordinates t(i) + ε at in-
puts i = 1, 2, 3, . . . , k, the temporal order of coordinates.
The task is now: estimate the noise-free function t from the
noise observations. In contrast to most traditional regres-
sion tasks, however, outputs are structured due to the phys-
ical constraints in the world and in turn there are non-linear
dependencies among coordinates. Although kernel meth-
ods are powerful tools for modelling non-linear dependen-
cies, and hence seem to be relevant for map matching,
most kernel (regression) models focus on the prediction of
a single output. Although generalizations to multiple out-
puts can often be achieved by training independent models
for each one or tying parameters across dimensions, this
fails to account for output correlations [Weston and Vap-
nik, 2002]. Consequently, we propose a different approach,
namely to ”embed” the output of F , i.e., the coordinates of
trajectory into the same space as the trajectory and the net-
work and in turn reducing the noise while still capturing the
multi-output, non-linear dependencies present in trajecto-
ries. Specifically, ignoring map constraints, we first embed
the trajectory and hence reduce noise. The resulting relaxed
assignment is then ”rounded” into an hard assignment ful-
filling the map constraints. On synthetic and real-world
trajectories, we show that this approach, called kernelized
map matching, can be used for map matching and performs
well compared to state-of-the-art hidden Markov models.
Fig. 2 shows KMM performance over some of the tasks
considered difficult among map matching experts [Newson
and Krumm, 2009].
We proceed as follows. We start off by reviewing related
work and mathematical background. In Section 3, we then
introduce kernelized map matching. Before concluding, we
present the results of our experimental evaluation in Sec-
tion 4.

2 Related work:
The work presented in this paper is conceptually built upon
three areas of research, namely map matching, structural
embeddings and kernel methods. We briefly describe the
background work in each of these areas respectively.

Quddus et al. [Quddus et al., 2007] provide a good sur-
vey of existing map matching algorithms. Following them,
existing approaches can be broadly categorized into four
categories (or a combinations of them): geometric [Fox
et al., 2003], topological , probabilistic [Quddus et al.,
2007] and other advanced techniques [Taylor et al., 2001].
Specifically, geometric map matching approaches utilize
the shape of the spatial road network without consider-
ing the continuity or connectivity of it. Topological ap-

proaches use the connectivity and other topological fea-
tures to restrict the candidate matches for solution points.
Finally, probabilistic and advanced approaches are referred
to as those ”using more refined concepts such as a Kalman
Filter, a fuzzy logic model or the application of hidden
Markov model”. Another dimension along which map
matching approaches can be distinguished is ”incremental
vs. global” [Lou et al., 2009].
In the present paper, we take the traditional, data-driven
view of map matching (refer to [Lou et al., 2009] for more
details) which is defined as

Given a trajectory T and a street network G, find
a path P in G that matches T with its real or
ground truth path.

Next to traditional map matching approaches, our approach
builds upon ideas from structural embeddings [Quadrianto
et al., 2009], [Guo et al., 2008]. The idea is to view
trajectories as a special type of graph called Euclidean
graph [Pemmaraju and Skiena, 2003].

Definition 1 (Euclidean graph): A Euclidean graph
G(V,E) is a graph in which

1. the vertices represent points in the Euclidean plane
R2, and

2. the edges are assigned lengths equal to the Euclidean
distance between those points, i.e., a straight line be-
tween corresponding vertices.

In order to view a trajectory as an Euclidean graph, we need
to capture the spatial and temporal aspects of the trajectory
inside it. The spatial aspect of a trajectory is already cap-
tured in the Euclidean graph through R2 coordinates of the
graph’s vertices. In order to capture the temporal aspects
of a trajectory, we time stamp the vertices of the graph in
the order of the trajectory. The poly-line structure of street
network graph with its vertices embedded in R2 is, indeed,
an Euclidean graph. To make it explicit, we can add ad-
ditional vertices to every corner of the lines constituting a
road segment. Consequently, map matching, can be viewed
as a problem of

”matching, i.e., finding similarity between two
Euclidean graphs”.

Indeed, Euclidean graphs can actually be found in many
machine learning problems such as map matching [Brakat-
soulas et al., 2005], shape analysis, protein structure analy-
sis, time series similarity analysis, among others. However,
—to the best of our knowledge— ,the problem of match-
ing Euclidean graphs, i.e., ”finding similarity between two
Euclidean graphs” has not been considered yet. Instead,



the problem has been approximated by casting it into a tra-
ditional ”embedding” respectively ”graph matching” prob-
lem and in turn dropping important information. Specif-
ically, graph matching is typically formulated as a prob-
lem where we only seek a node-to-node matching between
the input and output graphs. Euclidean graph matching is
different as the nodes of the input graph (trajectory) can
be mapped to any point lying on the edges of the output
graph (street network graph).Embedding [Lee and Verley-
sen, 2007], on the other hand, is a generic problem: find a
set of points in a (typically) low-dimensional space having
similar properties and relationships as the points in the orig-
inal input space. So far, however, it has only been consid-
ered for matching graphs in the traditional sense discussed
above, see e.g. [Lee and Verleysen, 2007], [Guo et al.,
2008; Quadrianto et al., 2009].Hence, this approach suf-
fers from the same issues as the standard graph matching
approach. Nevertheless, they employ kernel methods. We
use a simple embedding technique called Multidimensional
scaling(MDS) [Cox and Cox, 2000] defined as following:
Definition 2 Multidimensional Scaling(MDS): MDS is
an embedding technique which uses the so-called stress
function (the sum of squared differences between the simi-
larity criteria of input and latent spaces) to come up with
embedding X for input Y . Lets say Kx and Ky denote the
similarity matrices for output X and input Y . Then the ob-
jective function Fo using MDS can be described as follows:

Fo = argmin
X

∑
i,j

(Kx(i, j)−Ky(i, j))
2 (1)

Embedding approaches i.e, MDS and other, are called ’ker-
nelized embedding’ [Guo et al., 2008] when they use kernel
matrices as similarity criteria. Kernel Methods help with
embedding in special cases because they are more suitable
to non-vectorial data sets (text, images, protein sequences,
graphs, trajectories, etc..) [Shawe-Taylor and Cristianini,
2004]. Our method is inspired by these techniques but gen-
eralizes them to the Euclidean graph case.

3 Kernelized Map Matching
Recall from the introduction that map matching would be
easy if the observed coordinates were noise-free. In this
case the observed coordinates would simply constitute the
solution. In general, we cannot expect to reduce the noise
completely. Consequently, we propose a two steps ap-
proach:
(1) To reduce the noise, embed the trajectory from R2 into
R2 using kernel methods to capture the multi-output, non-
linear dependencies present in trajectories.
(2) To account for remaining noise, ”round” the embed-
ding into an hard matching. We will now explain each of
the steps in turn.

3.1 Euclidean Graph Matching
We proceed with some notation and problem description.
G(V,E) denotes a trajectory (input graph) where vertices
are indexed by time t , i.e. V = {vt}|V |t=1, vt ∈ R2, while
G
′
(V
′
, E
′
) denotes street network graph (output graph)

where V
′

= {v′i}
|V
′
|

i=1 , vi′ ∈ R2 are the set of nodes for

street segments and E
′

= {e′i,j}
|V
′
|

i,j=1, e
′

i,j ∈ {θvi + (1 −
θ)vj , θ ∈ [0, 1]} , if e

′

i,j corresponds to a street segment
otherwise it is empty. Notice that e

′

i,j is defined as a con-
vex combination of vertices, i.e a straight line between the

nodes .In general, a street segment is defined as a poly-line
however we can always divide it into a set of straight lines
considering each corner of lines as a vertex to match our
representation. Figure 3 illustrates the meaning of a street
segment in V

′
as a convex combination. Φ denotes the

Figure 3: An edge in G = (V,E) as a convex combination
of two vertices

vector of mappings between a trajectory G and street net-
work G

′
. Unlike traditional graph matching where nodes

of one graph are only matched to nodes of another graph,
we need a mapping Φ which matches nodes of our input
graph(trajectory) to any location over street segments in
E
′
: i.e. Φt = Φ : vt 7→ e

′ × [0, 1] where the interval
[0, 1] specifies a value of θ pointing the exact location of
mapping over a street segment in E′.
The truth value of vertex assignments to street segments

can be stored in a binary matrix ∆, i.e. ∆ ∈ {0, 1}|V |×|E
′
|

subject to ∆>1 = 1. Here 1 denotes a column vector of all
ones. The last constraint enforces that each trajectory point
can only be mapped to one street edge at a time.
Definition 3 (Map Matching) Find a correspondence Φ
between vertices of trajectory G and locations on street
network G′ such that the two matched sets, V and Φ, look
most similar according to an objective criteria Fo. The
problem is solved through finding an assignment of V to
points lying on the edge set E′ that minimizes the criteria
Fo.
The function Fo is of special interest and should have a
form which preserves the relationships among input points
while translating them to output space. We further assume
that Fo is a decomposable function of a summation of ba-
sis functions, denoted by fΦi,Φj

.Thus to minimize Fo, we
need to minimize the individual entries of summation. We
also introduce the assignment matrix ∆ in Fo. The assign-
ment matrix ∆, enforces the Euclidean graph (or street net-
work) constraints on the output i.e

Fo = argmin
Φ

|E
′
|∑

l

|V |∑
i,j

∆i,l · fΦi,Φj

s.t ∆ ∈ {0, 1}|V |×|E
′
|
,∆>1 = 1

(2)

Eq. (2) describes the map matching problem as a so-called
integer linear program (ILP) which are generally known to
be NP-hard except for a few classes of them. Such mathe-
matical programs have a discrete and a continuous part. In
our case, the discrete part chooses the correct combination
of trajectory point (v ∈ V ) versus street segment (e′ ∈ E′).
The total number of combinations is V E

′
, which easily gets

intractable even for a modest number of trajectory points
and street network segments. Relaxation is a standard tech-
nique to reduce the complexity of ILP problems. In relax-
ation, we drop the discrete part of the problem to make
it a standard linear programming problem where the opti-
mization can be carried out in polynomial time. The result
of the optimization is then rounded into a hard assignment



fulfilling the discrete constraints to get an approximate so-
lution. In our case, discrete constraints amount to street
network constraints and relaxation means ignoring these
constraints. Eq. (3) describes the unconstrained Fo

Fo = argmin
Ψ

|V |∑
i,j

fΨi,Ψj (3)

Notice that we have changed the output vector Φ to inter-
mediate output Ψ. The mapping Ψ is different from Φ as
it maps a a vertex vt to R2: i.e Ψt = Ψ : vt 7→ R2.Now
the solution of the optimization will be an approximation
of the path used by trajectory instead of the original path.
Afterwards we can convert this approximate path into the
street network path through a rounding step. Hence, we
provide a two step framework for the solution of Eq. (2)
• Optimize the relaxed objective function to approxi-

mate the trajectory path
• Provide a rounding scheme for assignment of step a

output to street network.
We proceed by describing the details of these two steps in
turn.

Optimization Step
Eq. (3) describes Fo as a summation of entries fΨi,Ψj

.
Now we come to details of an individual entry fΨi,Ψj

. For
this purpose, we define two Kernel matrices KG and KG′ ,
where KGi,j

is the kernel function between trajectory ver-
tices vi and vj : i.e KGi,j = kG(vi, vj) and KG

′
i,j

is the
kernel function between the mappings Ψi,Ψj of the ver-
tices vi and vj i.e KG

′
i,j

= kG′ (Ψi,Ψj). The widths of the
Kernels KG and KG′ are denoted by σG and σG′ . Now we
define fΨi,Ψj as the ’difference of kernels’ function.

fΨi,Ψj = (kG(vi, vj)− kG′ (Ψi,Ψj))
2 (4)

Now we can substitute the value of fΨi,Ψj in Eq. (3).

Fo = argmin
Ψ

|V |∑
i,j

(kG(vi, vj)− kG′ (Ψi,Ψj))
2 (5)

Eq. (5) comes from an embedding technique known as
Multidimensional scaling described in Eq. (1). We further
note that Eq. (5) is like a regression equation with multiple
outputs where we want to preserve the correlation among
inputs during our structured prediction process and it can
be used for embeddings across different spaces and struc-
tures, however our case is a special case where the input
and output spaces are the same. To encode our prior knowl-
edge that the solution of the embedding lies in the spatial
neighbourhood perturbed by Gaussian noise, we add a reg-
ularization term which fuses the input and output space into
one. We propose a kernel function kGG′ between the re-
spective points of our input and output graphs and define it
as

kGG′ (λ, σN , i) = e−((vi−Ψi)
2−λσ2

N )2/2σ2
N (6)

where λ is a stiffness parameter of the kernel function while
σN , the kernel width, is the estimated standard deviation
of noise in trajectory. We finalize our objective function Fo
as following:

Fo = argmin
Ψ

∑
ij

(KGi,j −KG
′
i,j

)2 −
∑
i

kGG′ (λ, σN , i)

(7)

Eq. (7) is the final objective function which we are using
in kernelized map matching. However alternative embed-
ding approaches can also be used in principal. We can take
the derivative of Fo in Eq. (7) w.r.t Ψ and can find the an-
swer. We use ’scaled conjugate gradient’ algorithm for op-
timization [Shewchuk, 1994]. For assignment purposes, we
apply a rounding scheme on the result of continuous opti-
mization. We implement the optimization step in sliding
window style of width kw, because it makes the solution
real time, localized and efficient.

Spatio-temporal Kernel over Euclidean Distances
The kernels KGi,j

and KG
′
i,j

, that we have used are
similar to RBF kernels. The only difference with an RBF
kernel is that we use ’the sum of euclidean distances for
all successive pairs of points between i and j’ instead of
using ’euclidean distance between i and j’ directly. This
little trick allows us to capture the spatial and temporal
correlation among trajectory points in our kernel matrices.
To elaborate further: for two points pi and pj in a trajectory
where j > i, the sum of successive euclidean distances is
denoted by δi,j , and is defined as:

δi,j =
∑

i6m<j

|pm, pm+1|2

The kernel Ki,j is simply an RBF kernel with δi,j as the
core part instead of the direct euclidean distance between i
and j.

KG(i, j) = e−δi,j/σk (8)
A kernel is a valid kernel if there exists an embedding space
for input points where it can be applied as a known kernel.
One can show that our spatio-temporal kernel is a valid ker-
nel because if we project a trajectory onto a straight line
such that every successive distance is preserved and then
take the RBF kernel over the points of this projection, it
will be same as the above mentioned kernel. By virtue of
being ’valid’, the spatio-temporal kernel described can be
integrated with other kernels in future to reflect more do-
main knowledge.

Rounding Step
After the noise is reduced by the optimization, we have to
assign the points to street network. The simplest rounding
scheme can be a nearest neighbour based one. However,
we provide a more sensible scheme, which is based upon
the following assumptions:

1. Assumption 1: For nearby points, the Euclidean dis-
tance between points resembles shortest street net-
work graph distance;

2. Assumption 2: Most of the map matching algorithms
use a radius ε to restrict the assignment possibilities.

For assigning a point Ψi to the street network, we pick all
edges inside ε-neighbourhood and find nearest neighbours
of Ψi on these edges. The resulting points are our candi-
dates for the solution Φi. We denote the set of candidate
solutions for Φi as CΦi

. According to our assumption 1,
Ψi should be assigned to a point c ∈ CΦi

which minimizes
the difference between euclidean distance and shortest path
distance between the solution Φi and Φi−1. For this pur-
pose, we take an RBF kernel KΩ between graph distance
(denoted by Ω(x, y)) and Euclidean distance (denoted by
d(a, b)) as following:

KΩi
= e−(d(Ψi,Ψi−1)−Ω(c∈CΦi

,Φi−1))2

(9)
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(a) Input vs. Ground truth (b) Step 1: Kernelized Embedding (c) ε-ball radius

(d) Step 2: Rounding
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(e) Conflict Resolution (f) KMM Output

Figure 4: Step-by-step illustration of Kernelized Map Matching. (a) Map matching input with ground truth values. Red
squares denote the input Trajectory; Gray edges, the street network graph; dashed lines, the ground truth path and crosses
the ground truth points. (b) Approximation of ground-truth path by kernelized embedding in a relaxed setting. Blue circles
denote the optimization output Ψ. (c) Imposition of ε−ball radius to reduce the number of candidate matches for rounding.
Dashed-circles denote ε−balls. (d) Hard assignment of Ψ to street network graph in the rounding step on the basis of
RBF kernels Blue squares denote the assignment. (e) A conflict and its resolution. The graph distance is greater than α×
Euclidean distance, both points are discarded to get a vote from neighbours. (f) The final output points and path computed
by KMM. (Best viewed in color)

KΩ stipulates the assumption 1 for two consecutive points.
However to avoid KΩ output going away from input point,
we add a regularizer term which is also an RBF kernel be-
tween a Ψi and the candidate in question. Now for all ele-
ments c ∈ CΦi

we calculate the following term

−e−(c∈CΦi
−Ψi)

2

·KΩi (10)

The candidate point which gives the minimum value for
this term is chosen as solution Φi. In most of the cases, the
comparison term between candidates, i.e. regularized KΩi

produces the right result however it is possible that after
assignment the graph distance between Φi and Φi−1 is far
greater than the Euclidean distance between them, which
introduces a conflict and violates our observation 1. To
check these we take a constant α and multiply euclidean
distance by it. After assignment, if the graph distance
Ω(Φi,Φi−1) is greater than α×d(Ψi,Ψi−1) (α-condition);
we employ a resolution scheme, inspired by [Newson and
Krumm, 2009]. We discard Φi and Φi−1 and consider Φi−2

as our previous point instead of Φi. After the assignment
Φi+1 , we again see whether the condition 1 is violated or
not, if it happens again, we discard Φi+1 and Φi−2 and go
ahead in the same fashion. We continue doing so until α-
condition is not violated any more after an assignment of
a point denoted by Φî. Once we find such a point Φî , we
can again resume the standard comparison. However, be-
fore resuming the comparison, we assign all the discarded
points on the shortest path between Φî and the correspond-
ing previous point. A conceptual work-flow of KMM
steps together with explanations for each step are provided

in Fig. 4

Parameter Selection
KMM has four input parameters, namely, σn, standard de-
viation of noise; λ, stiffness parameter for regularization
term of Fo; α, the rounding step parameter and kw, width
of sliding window for objective function Fo.We discuss se-
lection process for these parameter as following:
σN is required as an input to Fo in the regularization term.
Our method for estimating σN is carried out on a hold-
out sample of 20 ground truth points and the approach is
same as [Newson and Krumm, 2009]. Alternative strate-
gies include estimators from other map matching solutions
or empirical standards for given application. λ is the stiff-
ness parameter of regularization term. A reasonable range
for choice of λ is between 0.5 and 1.Clearly, λ > 1 make
the standard deviation of Ψ more than the trajectory while
λ < 0.5 is too restrictive on output. In our experiments,
have chosen λ=0.6. kw is the sliding window width for
execution of optimization step. Figure 6 shows the results
for kw = {3, 4, .., 6} over a synthetic data set. We have
chosen kw = 5 for most of our experiments. According to
our observation, kw > 6 proves a bit time consuming dur-
ing optimization while kw < 3 is not sufficient to capture
the local geometry. α- is the parameter ’governing rela-
tionship between Graph and Euclidean distance’. We set
it to 1.5 which means that Graph distance should not be
greater than 1.5×Euclidean distance. A reasonable range
is 1 ≤ α ≤ 2. σKG

and σK
G
′ are learned through opti-

mization over a holdout sample of 20 consecutive input.



Algorithm 1: KMM
Input : G,G′, KG,KG′ ,KGG′ ,KΩ,λ,kw, α,σN
Output: Φ(V ) - The Output Path P

// G,G′- Euclidean Graphs
// KG,KG′ ,KGG′ ,KΩ -Graph Kernels
// λ -Regularizer
// kw- sliding window width
// α- constant for Euclidean versus

Graph distance validation
for i← 1 : |V | − kw do

foreach sliding window do
compute KG,KG′

Ψ← Optimize Fo w.r.t Ψ

i← 1 , iprev ← 1 , prevdist ← 0
while i < |V | do

i← i+ 1
iprev ← max(1, iprev)
minobj ←∞
if iprev = i− 1 then

prevdist ← 0
condist ← d(Ψi,Ψi−1)

else
condist ←
d(Ψi,Ψi−1) + prevdist + d(Ψiprev ,Ψiprev+1)

for c ∈ CΦi do
objval ← −e−(c−Ψi)

2

.KΩi

if objval < minobj then
minobj ← objval
Φi ← c

if Ω(Φi,Φiprev ) > α× d(Ψi,Ψiprev ) then
iprev ← iprev − 1
prevdist ← condist

else
Assign all points between i and iprev to
shortest path between Φi and Φiprev

Output path P by connecting consecutive Φ

4 Experimental Evaluation
In this section we report the results from a series of exper-
iments which we conducted in order to empirically investi-
gate the following questions:

(Q1) Can kernel methods be used for map matching?

(Q2) If so, how do they perform compared to state-of-the-
art methods?

(Q3) Is kernelized embedding indeed reducing the noise?

(Q4) Does the rounding step in KMM contribute to the er-
ror reduction?

To this aim, we implemented KMM in scientific Python
running on a standard Intel-Quadcore 2GHz computer.

Overall, we decided for two experimental setups. Our
first experimental setup evaluates and compares KMM’s
accuracy performance on a real-world dataset recently used
in [Newson and Krumm, 2009] to evaluate an hidden
Markov model based map matching approach and hence
addresses Q1, Q2. To address Q4 we compare the perfor-
mance of our rounding step with a randomized rounding
step. The second setup investigates Q3 by comparing the
result of KMM’s embedding step to baseline ”closest point
on edge” using synthetically generated dataset.

4.1 Q1+Q2+Q4: Real-World Dataset
In our first experiment, we compared KMM’s performance
to the performance of Krumm and Newson’s recent hid-
den Markov model based approach [Newson and Krumm,
2009]. To measure performance, we used the Route
Mismatch Fraction measure already used by Newson and
Krumm. Route Mismatch Fraction(RMF) is the total length
of false positive and false negative route divided by length
of original route [Newson and Krumm, 2009]:

d+ = length of erroneously added route
d− = length of erroneously subtracted route
do = length of original route

RMF =
(d+ + d−)

do

We used Krumm and Newson’s dataset. It consists of a
50-mile route in Seattle sampled at 1 Hz, giving one tra-
jectory of 7531 time stamped latitude/longitude pairs along
with manually matched ground-truth path. The street net-
work comprises around 150, 000 road segments. [Newson
and Krumm, 2009] presented results for different sampling
intervals and noise degradations of this data. We take six
base cases where HMM model performance is good, i.e
5,10 seconds sampling intervals vs. 30,40,50 meters noise.
Because we want to have a statistical comparison (average,
significance,etc.) with HMM, we perform 25 experiments
for comparison with each base value in the following way.
For one sampling interval, say 10, we choose 5 different
starting points from the initial 5 points of the trajectory
and then sampled at the given rate. Following this pro-
cedure, we prepared experimental datasets for each sample
by adding 5 instances of noise for one standard deviation
(e.g 30), i.e

25 datasets/combination = 5 samples ×5 noise instances.

Fig. 5 summarizes the experimental results showing the
RMF errors. As one can see, in 5 out of 6 cases KMM
estimated a lower route mismatch fraction. The statistical
significances of the results are shown in Table 1. In 4 out
of 5 cases where we are better, the differences in mean
values are significant (t-test, p = 0.05). Averaged over
all experiments, a Wilcoxon test identifies KMM to be
significantly better.
To address Q4, we compared the performance of our
rounding step with a randomized rounding step, i.e random
assignment of embedding output Ψ to a street network
point in ε-ball, over the real-world dataset described
above. Table 2 summarizes the results. As one can see our
rounding step always performs better, and in most cases
outperforms the randomized rounding step by a margin of
4-10 percent in error.

To summarize, the results clearly answer questions Q1
,Q2 and Q4 affirmatively.

4.2 Q3: Synthetic Datasets
In order to investigate how well the embedding step re-
duces noise, we generate ground truth points with the help
of synthetic data. To generate the data, we used Thomas
Brinkhoff’s data generator [Brinkhoff, 2000]. It allows
to generate trajectories according to some underlying road
network for different speed and sampling time variation
setting. Additionally, we assumed normal noise on the
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Figure 5: Route Mismatch Fraction of KMM vs. HMM for different noise level (NL, in meters) and sampling rates (SR, in
seconds). We ran 150 experiments i.e 25 experiments/per NL-SR setting. One blue dot denotes the route mismatch fraction
for an experiment, blue graphs the estimated normal distributions, red lines the means, and dashed green lines the route
mismatch fraction for an HMM as reported by Newson and Krumm. As one can see, in 5 out of 6 cases KMM estimates
a lower route mismatch fraction. In 4 out of 5 cases, the differences in mean values are significant (t-test, p = 0.05).
Averaged over all experiments, a Wilcoxon test identifies KMM to be significantly better. (Best viewed in color)
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Figure 6: Scatter plots of the root mean squared(RMS) error of KMM and of the baseline, closest point on edge, for
different window sizes (K) on the Oldenburg dataset for different noise levels (20, 30, 40, . . . , 100) as denoted by the
numbers associated with the dots. For better comparison with the equilibrium (solid straight line), we also show the linear
regression line of the values. As one can see KMM performs much better with increasing noise levels. The regression lines
have consistently a smaller slope than the ”equilibrium” line. The turning point is around noise level 25. (Best viewed in
color)

generated observations. it is well known navigation sys-
tems produce noise that is normally distributed with aver-
age of noise (σN ) ranging from 10-100 meters. For in-
stance, Krumm and Newson [Newson and Krumm, 2009]
discussed the different types and amount of noise in real-
world movement data and have shown that they can be de-
scribed well by a Gaussian shape.

Specifically, we generated 100 trajectories of average
length 50 from the street network of Oldenburg, Germany.
Then, we added noise σN for σN = 20, 30, . . . , 100. This
resulted in an overall set of 900 trajectories. As baseline
for comparison we used a ”project to the closed point in
the street network” approach. To get a fair comparison, we
also used the ”project to the closed point in the street net-
work” as ”rounding” method for KMM. We report on the
root means squared difference in meters achieved by the

two methods.
The results are summarized in Fig. 6. As one can see, in

all cases the embedding indeed reduced noise considerably.
Moreover, it performs better with increasing noise levels as
the regression lines have consistently a smaller slope than
the ”equilibrium” line. The turning point is around noise
level 25. This clearly answers question Q3 affirmatively.
To summarize, the results of our experiments indicate that
kernel methods can indeed be used for map matching and
achieve results comparable to state-of-the-art techniques.

5 Conclusion
In this paper, we have recognized that kernel methods have
an important role to play in map matching. Specifically, we
have established — to the best of our knowledge — the first
link between map matching and kernel methods and instan-



Statistics for sampling rate=5
Noise σerror student t Wilcoxon signed rank
30 0.029 1 0.00012
40 0.03992 1 0.0027
50 0.036 1 0.00122

Statistics for sampling rate=10
Noise σerror student t Wilcoxon signed rank
30 0.027 1 0.0004
40 0.034 0 0.047
50 0.054 1 0.00941

Table 1: Statistics table for comparison with HMM

Noise Ratio KMM Error ERR SR=5 ERR SR=10
30 0.1463 0.1783 0.1480
40 0.3022 0.3221 0.2350
50 0.3739 0.4671 0.3979

Table 2: Comparison of average KMM error with average
Randomized Rounding (ERR) error over different Noise
Ratio and Sampling Rates (SR)

tiated the link by developing an easy-to-implement kernel-
ized map matching (KMM) approach. By accounting for
spatial and temporal correlations among the trajectories us-
ing kernels, map matching becomes less sensitive to noisy
observations. This allowed us to employ a simple round-
ing scheme to compute the hard assignments of trajectory
points to points lying on the network. Our experimental re-
sults on both simulated as well as real-world datasets show
that kernel methods can indeed be used for map match-
ing and can achieve better performance than state-of-the-art
hidden Markov models.

The link established between map matching and ker-
nels provides many interesting avenues for future work;
we have only started to explore it. Indeed, one should
study alternative kernels and map features, cost functions
and hyper-parameter optimization criteria. For instance,
so-called Fisher kernels are kernels derived from hidden
Markov models. In turn, we may utilize any HMM based
map matching approach. Testing KMM within a real-world
system tracking system is another interesting avenue. Prov-
ing the hardness of map matching problems along with
guarantees on approximation are interesting venues of fu-
ture work. Finally, KMM directly generalize to the case of
3D trajectories.
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