
Separate-and-conquer Regression

Frederik Janssen and Johannes Fürnkranz
TU Darmstadt, Knowledge Engineering Group

Hochschulstraße 10, D-64289 Darmstadt
{janssen,juffi}@ke.tu-darmstadt.de

Abstract
In this paper a rule learning algorithm for the
prediction of a numerical target variable is pre-
sented. It is based on the separate-and-conquer
strategy and the classification phase is done by a
decision list. A new splitpoint generation method
is introduced for the efficient handling of numer-
ical attributes. It is shown that the algorithm
performs comparable to other regression algo-
rithms where some of them are based on rules
and some are not. Additionally a novel heuris-
tic for evaluating the trade-off between consis-
tency and generality of regression rules is intro-
duced. This heuristic features a parameter to di-
rectly trade off the rule’s consistency and its gen-
erality. We present an optimal setting for this pa-
rameter based on an optimization on several data
sets.

1 Introduction
The accurate prediction of a numerical target variable is
an important task in machine learning. There are several
domains that can benefit from regression methods. For ex-
ample, in the domain of financial data, it is a crucial issue
to predict the volume of a credit. Here, classification al-
gorithms can only provide a decision of whether or not a
credit should be given but are not capable of predicting its
size.

In the machine learning community the main task still is
to predict a categorical outcome but through the last years
the task of regression has gained more and more interest.
Regression has its roots in the statistical community from
where several algorithms were proposed over the years.
The list includes the popular linear regression that is very
efficient but still shows a good performance. The main ad-
vantage in using means of machine learning lies in the com-
prehensibility of the models. For instance, simple IF-THEN
rules are directly interpretable by a data miner. Rules and
trees are the two variants of interpretable models used in
machine learning. As rules are typically more expressive
because they are able to overlap, the goal of this work is
the design of a rule learning system that on the one hand
has a performance that is comparable to state-of-the-art al-
gorithms and that on the other hand yields models that are
still human-readable.

There are several strategies to induce a set of rules. Some
of them rely on the gradient-descent algorithm for finding
a rule ensemble that optimizes some loss function. Oth-
ers convert given trees into sets of rules. However, one of

the most popular strategy in classification is the so-called
separate-and-conquer paradigm. Due to its simplicity and
its good performance in classification1, we decided to use
this strategy to design the algorithm.

The paper is started with a brief recapitulation of related
work. It is continued by a short introduction of separate-
and-conquer rule learning for classification. Then the adap-
tations that are necessary to extent separate-and-conquer
rule learning for classification to regression are specified.
Some error measures are introduced and the handling of nu-
merical attributes is described. Then the experimental setup
and the evaluation methods are specified and the method
for optimizing the parameters of the algorithm is described.
The following section describes the results and the last one
concludes the paper.

2 Related work
The separate-and-conquer strategy is not used frequently
for learning regression rules. Exceptions include predic-
tive clustering rules (PCR) [Ženko et al., 2005], the FRS
system [Demšar, 1999], which is a reimplementation of the
FORS system [Karalič and Bratko, 1997], and M5RULES
[Holmes et al., 1999; Quinlan, 1992; Wang and Witten,
1997] which generates the regression rules from model
trees and uses linear models in the head of the rules. Predic-
tive clustering rules are generated by modifying the search
heuristic of CN2 [Clark and Niblett, 1989]. Instead of ac-
curacy or weighted relative accuracy, it uses a heuristic that
is based on the dispersion of the data. This algorithm also
follows a different route by joining clustering approaches
with predictive learning.

The R2 system [Torgo, 1995] works to some extent
analogously to other separate-and-conquer algorithms by
selecting an uncovered region of the input data. But
this selection differs from the mechanism used in regular
separate-and-conquer learning. However, it also allows for
rules to overlap and the rules predict linear models instead
of a single target value.

Other mechanisms for learning regression rules are
mainly based on ensemble techniques as used in the RULE-
FIT learning algorithm [Friedman and Popescu, 2008] or in
REGENDER [Dembczyński et al., 2008]. The first algo-
rithm performs a gradient descent optimization, allows the
rules to overlap, and the final prediction is calculated by the
sum of all predicted values of the covering rules instead of
that of a single rule. The second one uses a forward stage-
wise additive modeling.

1The famous RIPPER algorithm [Cohen, 1995], one of the
most accurate rule learners for classification is also based on the
separate-and-conquer paradigm.

Another popular technique to deal with a continuous
target attribute is to discretize the numeric values as a
preprocessing step and afterwards employ regular ma-
chine learning methods for classification. Research fol-
lowing this path can be found in [Torgo and Gama, 1996;
Weiss and Indurkhya, 1995]. The main problem here is
that the number of bags for the discretization process is not
known in advance. For this reason the performance of this
technique strongly depends on the choice of the number of
classes.

3 Separate-and-conquer rule learning and
Regression

Most inductive rule learning algorithms for classifica-
tion employ a separate-and-conquer strategy for learning
rules that allow to map the examples to their respective
classes. The basic idea of the separate-and-conquer strat-
egy [Fürnkranz, 1999] is to cover a part of the example
space that is not explained by any rule yet (the conquer
step). This region is covered by searching for a rule that
fulfills some properties, i.e., has a low error on this parti-
tion of the input space. After this rule is found, it is added to
a set of rules, and all examples that are covered by the rule
are removed from the data set (the separate step). Then,
the next rule is searched on the remaining examples. This
procedure lasts as long as (positive) examples are left. The
two constraints that all examples have to be covered (also
called completeness) and that no negative example has to
be covered in the binary case (consistency) can be relaxed
so that examples remain uncovered in the data or negative
examples are covered by the set of rules. This relaxation
mostly is driven from preventing overfitting.

In the end, the algorithm returns a set of subsequently
learned rules. For classification of unseen examples, each
of the rules in the list is tested whether or not it covers
the example. The first rule that covers the example (i.e.,
matches all the given attribute values) “fires” and predicts
the value of the example by using the head of the rule. If no
rule in the (decision) list covers the example, the prediction
is given by a default rule that usually predicts the majority
class in the data.

In the following we will have a closer look at the main
step of the algorithm2, namely how to navigate through the
search space. Most of the algorithms build all possible can-
didate rules from the data by using all values for a given
attribute and include these attribute-value pairs in a can-
didate rule. Thus, an attribute-value pair (a condition) is
added to a given candidate rule which results in a refined
candidate rule, i.e., a refinement of the former candidate
rule. For nominal attributes these values are given from the
data itself but for numerical attributes usually all possible
splitpoints are used. The splitpoints are calculated as the
mean between two adjacent (previously sorted) values.

Finally, when all candidates with one condition are gen-
erated a heuristic is used to determine the best one. Then,
the best candidate rule is stored and refined to yield all re-
finements with two conditions. For nominal attributes the
used ones are stored (and not used any more) and for nu-
merical ones the relations < and ≥ are evaluated. This
means that a numerical attribute may occur twice in one
rule by using it for a test on < and on ≥. This procedure
usually runs as long as negative examples are covered. In

2For pseudo-code of the algorithm see [Janssen and
Fürnkranz, 2010b].

this step the algorithm also ensures that a minimum number
of examples is covered (a user-given value). For all experi-
ments (cf. Section 5 and 6) we fixed the minimum coverage
to 3 examples.

Note that missing attribute values can never be covered
and the attribute with the missing value is ignored. When
the class of an instance is missing it is removed from the
dataset in a preprocessing step. As search strategy simple
hill-climbing was used.

There are many different heuristics to navigate the search
(for an overview see [Fürnkranz and Flach, 2005]) but all
of them are trying to maximize the coverage of positive ex-
amples (p) and to minimize the negative coverage (n). To
reach this objective different ways are employed but usu-
ally, in some way, there has to be a combination of consis-
tency (i.e., the error or the negative coverage) of the rule
and its generality (i.e., the number of examples that are
covered). Most of the heuristics have a fixed trade-off but
some of them feature a parameter to adjust it. In previous
work the parameters of some of these heuristics were tuned,
so that they achieved the most accurate trade-off between
consistency and coverage [Janssen and Fürnkranz, 2010a].
In this work we follow the same path by defining such a
parametrized heuristic and by tuning its parameter to yield
the best fit between these two objectives.

3.1 Separate-and-conquer for regression
As noted above some of the properties that come with cat-
egorical binary data do not apply for numerical target vari-
ables. Thus the algorithm had to be adapted in several
ways. First of all, each evaluation of a single splitpoint re-
quires a scan through the data. For this reason a novel split-
point method has to be developed that allows using only a
subset of all splitpoints to prevent the algorithm from get-
ting too inefficient (cf. Section 3.3). Mechanisms for the
efficient computation of splitpoints known from classifica-
tion proved to be inefficient in our first experiments.

The heuristics that were introduced for the task of classi-
fication were not suitable for regression either. In Regres-
sion there is no notion for positive or negative examples.
Hence, an alternative error measure has to be defined. The
default rule also has to be adapted because there is no ma-
jority class any more. A simple way to do this is to take the
mean over all remaining examples as prediction. Another
way would be to take the mean of all examples. We ex-
perimented with both settings (cf. Section 6). Finally, the
methods for evaluating the final model have to be adapted
because using measures like accuracy (the percentage of
correctly predicted examples) is not practicable any more.

3.2 Error measures for regression
There are several ways to compute the error of a rule or of
a complete model for regression tasks. This section gives
an overview of the measures we used.

In the followingm denotes the total number of examples
in the (current) dataset, y is the value of the current exam-
ple, ȳ is the value predicted by the rule, and y′ is the mean
over all examples.

The mean absolute error is the mean of the sum of the
absolute errors of all examples that are covered by the rule

LMAE =
1
m

m∑
i=1

|yi − ȳi| (1)

The root mean squared error is defined by taking the root
of the mean squared error

LRMSE =

√√√√ 1
m

m∑
i=1

(yi − ȳi)2 (2)

The problem of LRMSE is that it is domain-dependent.
As the amplitude of the values in the domain is chang-
ing the amplitude in the error measures is changing as
well. Thus, the errors are not comparable among different
datasets. For using this measures to compute the heuris-
tic value this may not be a problem because only candidate
rules are compared to each other. But if a combination of
the error and the coverage is taken this becomes crucial due
to normalization issues.

For the normalization of the LRMSE usually the devia-
tion from the mean is used which is given by

Ldefault =
m∑

i=1

(yi − y′)2. (3)

Thus, the relative root mean squared error3 becomes

LRRMSE =
LRMSE√
1
m · Ldefault

. (4)

These measures can be used for evaluating a single can-
didate rule but also for evaluating a whole theory (an or-
dered set of rules). Note that the LRRMSE has its best
value at 0 when each example is classified with the correct
value. Theoretically, its worst value is 1 because only the
value calculated by Ldefault was used for predicting the
value of an unseen example. Due to the split in 10 folds
that happens during the cross-validation the values of the
LRRMSE can become bigger than 1. A stratification of re-
gression values is not possible and this may results in splits
where the test fold contains examples that share values that
have never appeared in the training fold. In these cases the
prediction with the value of Ldefault would have been su-
perior to the values predicted by the learned model. Note
that some databases are practically even encode random-
ness because the LRRMSE values on those where always
bigger than 1 independently from the used algorithm.

To derive the relative coverage the number of covered
examples divided by the total number of examples is taken.

relCov =
1
m
· coverage(Rule). (5)

We decided to combine the error and the generality of a
rule by using the rrmse and the relative coverage

hcm = α · (1− LRRMSE) + (1− α) · relCov. (6)

Here, the parameter α enables a trade-off between the
error and the generality of the rule. For α = 1 the relative
coverage is ignored and thus the rules are evaluated solely
by inspecting their error. This setting would yield a model
that consists only of rules that cover a single example in
the data and would thus clearly lead to overfitting4. The
other extreme is to set α = 0 which results in ignoring
the error of the rule. A model built with this setting would
only consist of the default rule, because its coverage is the
highest that could be achieved by any rule. The optimal
trade-off lies somewhere in between these two extremes.

3In the remainder of the paper abbreviated with rrmse.
4Note that this holds only in a scenario where a rule may cover

a single example.

Figure 1: Example of the splitpoint clustering method

1 2 3 4 5 6 7 8 9 10
2 63211231.534

Attribute Value
Target Value

Step 1

Step 3

Step 2

3.5 5.5 6.5 9.5

3.5(0.5)

3 (0.67)

1.5(0.5)
2 (0.67)

2.25(0.75)

The heuristic hcm is an adaptation of a previously intro-
duced heuristic called relative cost measure [Fürnkranz and
Flach, 2005]. Its formula is given by

hcr = cr ·
p

P
− (1− cr) · n

N
. (7)

where p is the positive coverage of the rule, n is the neg-
ative coverage of the rule, P is the total number of positives
and N is the total number of negatives.

It was designed for evaluating classification rules thus
relying on coverage statistics. In previous work [Janssen
and Fürnkranz, 2010a] an optimal setting for the param-
eter of hcr was found (cr = 0.342). It encodes a clear
favor of the consistency (explained by p

P) over the cover-
age (denoted by n

N). It achieved good performance among
different classification heuristics as shown in [Janssen and
Fürnkranz, 2010a] since it was the second best heuristic of
all. Thus the motivation to modify exactly this heuristic
was the good performance and that it is best suited to be
adapted to regression.

3.3 Splitpoint processing
As noted above, the generation of all possible splitpoints
would be too costly. To avoid this a method to restrict the
splitpoints for an attribute was developed. The basic idea
comes from supervised clustering. Thus, we try to iden-
tify regions in the data of the current attribute that share a
small error computed on the target variable. The aim of the
clustering is to yield partitions of the attribute that share
a low error in the hope that the error of a rule that covers
these regions will also be low. Clustering stems from the
same motivation because it also guarantees that each clus-
ter has the lowest possible error. The user has to define how
many clusters and hence how many splitpoints are desired.
We experimented with different settings but surprisingly a
rather low number of splitpoints seemed to be sufficient (cf.
Section 5.1).

Figure 1 displays how the cluster algorithm works. In
the example in Figure 1 the attribute has 10 values moving
equidistantly from 1 to 10. The values depicted in blue are
those of the target attribute of the respective example. In
the first step the attribute values are ordered ascending and
each value becomes a cluster containing exactly this value.
Then two adjacent clusters are searched for which the error
when using the mean of the two target values as prediction
is the lowest. In the example these are the clusters 2 and 3,
7 and 8, and 8 and 9. Though the objective in the first step is
to join two adjacent clusters both 2, 3 and 7, 8 are joined (its
arbitrary whether to join 7 and 8 or 8 and 9). The mean of
the first cluster is 3.5 = 4+3

2 and the second one has a mean
of 1.5 (depicted in black in Figure 1 above the number ray).
If the mean absolute error is taken, both clusters have an
error of 0.5, which is shown in brackets and in red in the
corresponding figure. An error of 0.5 = |4−3.5|+|3−3.5|

2 is
also the lowest error that can be achieved given the example
data.

In the second step the function is executed recursively
and again those clusters are joined that have the lowest er-
ror among all possible clusters. So, in this step, cluster
1 is joined with the second cluster and the cluster with a
value of 9 is joined with the third cluster. The error of
both clusters grows to 0.67 because adding the respective
example does yield a raise of the error (i.e., LMAE =
|2−3|+|4−3|+|3−3|

3 = 0.67 for the first cluster). Joining
any of the untouched clusters leads to a higher error which
means that the cluster with next lowest error is built in step
3. After the second step two clusters containing at least 2
examples were built and therefore 5 splitpoints exist. In the
example the user given number of splitpoints is set to 4.
Hence another cluster has to be built until the algorithm is
finished. This last cluster is derived by joining the clusters
with the values 4 and 5 and it yields an error of 0.75.

After the third step 3 clusters are built and the splitpoints
are simply derived by taking the mean between the values
of two adjacent clusters or two values if the cluster contains
only one example. The 4 splitpoints are 3.5, 5.5, 6.5, and
9.5 (depicted in red in Figure 1 in the number ray). We
have evaluated the effectiveness of the splitpoint method
by comparing it to the usage of another splitpoint method
where n splitpoints are selected equidistantly. The results
of this comparison are shown in Section 6.1. For the com-
putation of the error the mean absolute error was used.
This choice is arbitrary but experiments with the root mean
squared error did not yield any performance difference.

3.4 Parameters of the algorithm
There are 3 parameters the user has to specify.
• The parameter of the heuristic,
• the number of splitpoints (splitpoint-parameter), and
• the percentage of examples that are left uncovered

(left-out-parameter).
The parameter of the heuristic is optimized with a greedy

procedure that narrows down the region of interest. This
procedure is described in detail in Section 5.

The number of splitpoints is crucial for the runtime of the
algorithm. This value was optimized by testing different
values (cf. Section 5.1).

The last user-given parameter is the percentage of exam-
ples that are left uncovered by the outer loop of the algo-
rithm. This parameter clearly depends on the dataset. Dur-
ing the experiments there was some evidence that we had
included databases that basically encode randomness and
for those learning anything results in worse performance
(e.g. the dataset quake).

4 Experimental setup
To optimize the 3 parameters some datasets were used for
tuning and were split into 2 folds of equal size. On the first
fold of each dataset, all steps of the optimization procedure
were done and afterwards the best model was evaluated
on the second fold. This is also done vice versa. Hence,
the experiments yield two configurations of the same al-
gorithm that only differ in the parametrizations. A test
of the parametrizations on the hold-out folds of the tun-
ing datasets is the first step of the evaluation. Additionally
some insights are gained by evaluating the two variants also
on those datasets that were used during the optimization.
To complete the evaluation, the two resulting configura-
tions were also evaluated on some datasets that were not
used for any optimization purposes.

The aim of the experiments was to optimize the parame-
ters of the algorithm on a set of diverse datasets to capture
characteristics of a wide variety of different datasets. Our
hope was that by taking a set of datasets that are very differ-
ent the parameters would be more stable. For this reason,
we selected 29 databases in total from the UCI-Repository
[Asuncion and Newman, 2007] and from Luis Torgos web-
site5. The datasets were divided into 20 sets that were used
during the tuning phase and 9 sets that were only used for
evaluation purposes. The tuning datasets were

abalone, auto-mpg, auto-price, breast-tumor,
compressive, concrete-slump, cpu, delta-
ailerons, echo-month, forest-fires, housing,
machine, pbc, pyrim, quake, sensory, servo,
strike, triazines, winequality-white

As mentioned above the main motivation to select these
datasets was to capture a lot of different learning prob-
lems. Thus, the number of nominal and numerical at-
tributes should be different among the databases and the
domains from which they origin should be as diverse as
possible.

The 9 datasets that were used to evaluate the algorithms
were

auto93, auto-horse, cloud, delta-elevators, meta,
r wpby, stock, veteran, winequality-red

The distribution among the 20 tuning databases in terms
of nominal and numerical attributes as well as in terms
of size should be approximately the same as in the test-
ing datasets. Therefore both bags of data contain some
small, some medium and some big databases. For a de-
tailed overview of the datasets see [Janssen and Fürnkranz,
2010b].

4.1 Evaluation methods
The primary method to evaluate the algorithm was the
rrmse. The advantage of this evaluation measure clearly
lies in its domain-independency. For some of the experi-
ments it would take too much space to include results on
every single dataset. In those cases our means for evaluat-
ing the different algorithms was to average the results over
all datasets. We are aware of the problems that come with
averaging results over many different domains (i.e., some
databases may be outliers with huge variance compared
to the majority of the other datasets) and hence include a
Friedman-Test with a post-hoc Nemenyi-Test as suggested
in [Demsar, 2006]. The resulting CD-charts give insights
how good the algorithms perform by evaluating their rank-
ing independently from using average accuracy.

There are other ways to evaluate regression algorithms
domain-independently. The correlation coefficient for in-
stance is also widely used. But there are some draw-
backs from using this method regarding rule learning algo-
rithms. For results including the correlation coefficient and
a discussion of the drawbacks see [Janssen and Fürnkranz,
2010b].

5 Optimizing parameters
For the split into the 2 folds, all datasets were randomized
in advance using the unsupervised randomize function of
weka [Witten and Frank, 2005]. All evaluation measures
were computed using one run of a 10-fold cross validation.

5These databases can be downloaded at http:
//www.liaad.up.pt/˜ltorgo/Regression/
DataSets.html.

Table 1: Results for the splitpoint computation and left-
out-parameter (average rrmse over the 5 parametrizations
of the heuristic)

parameter
(splitpoint)

folds 1 folds 2

1 1.0675 1.0540
3 0.9929 1.0256
5 1.0132 1.0261
7 1.0067 1.0245
9 0.9992 1.0209
11 1.0126 1.0427
19 1.0163 1.0240

parameter
(left-out)

folds 1 folds 2

0 0.9929 1.0209
0.01 0.9787 1.0221
0.02 0.9776 1.0182
0.03 0.9759 1.0156
0.05 0.9739 0.9940
0.1 0.9704 0.9835
0.2 0.9736 0.9701

5.1 Optimization of the splitpoint and the
left-out parameter

Though these two parameters are likely to have a small de-
viation in performance among different databases, we de-
cided to optimize them first and fix them before we start
optimizing the parameter of the heuristic. We believe that
the parameter of the heuristic has a stronger influence on
the performance of the algorithm than the other two param-
eters. This is mostly because the heuristic is used to eval-
uate every single candidate rule and therefore is the most
important factor in the algorithm. Note that the heuristic
also has a strong influence on the quality of the rules and
on the total number of rules found by the algorithm. The
other two parameters are also influencing the performance
of the algorithm but rather in an indirect way by assuring
to provide splitpoints of good quality and by leaving those
examples untouched that are hard to learn.

For this reason, we focussed more on the heuristic pa-
rameter than on the other two. If we had concentrated more
on these two the performance of the algorithm could have
been become a bit better but our main idea was to derive
stable parameters for the heuristic and we believe that the
gain in performance depends stronger on the heuristic pa-
rameter than on the other two (cf. the experimental results
in section 5.2).

To start optimizing the splitpoint parameter the other two
had to be fixed. In advance it is not known how to deter-
mine these values. Thus, the left-out-parameter was fixed
to 0, therefore all examples have to be covered. In this case
the default rule is built by using the mean of all examples.
In other cases where examples remain uncovered it is built
by using the mean of all uncovered examples. On the con-
trary, it is not obvious what parameter value can be used
for the heuristic. For this reason, 5 different values were
used during the optimization. To make a choice, the two
extremes were included (α = 0, and α = 1), and some
values in between, namely 0.4, 0.5, and 0.6. These values
were used to include different preferences of the heuristic.
Clearly, using only two parameters would be suboptimal
because there is some evidence that the optimal parame-
ter rather would lie somewhere in the middle of the do-
main than at the beginning or the end of it [Janssen and
Fürnkranz, 2010a]. We expected the curve yielded by plot-
ting the parameter over the error to be shaped like a U,
where the two extreme values would results in a rather bad
performance and the optimal value lies somewhere around
0.5 (cf. Section 5.2). To have a combined error mea-
surement for the optimization procedure the mean over the
rrmse of these choices was taken.

In the beginning, the left-out-parameter was fixed to a
value of 0 yielding a starting point for the optimization of
the splitpoint-parameter. To find the best value some intu-

itive values (1, 3, 5, 7, 9, 11, and 19) were used. All values
bigger than 19 were skipped because a clear gain in run-
time performance should be achieved. Using huge values
would result in practically using all possible splitpoints and
thus would not improve the algorithm’s runtime6.

Table 1 (left table) shows the results for the two op-
timization procedures (for the two folds of the tuning
datasets). As can be seen the best number of splitpoints
was 3 on the first folds and 9 on the second folds (the low-
est error is depicted in bold in the figure). On the first folds,
however, using 9 splitpoints yields the second best rrmse
which lacks only 0.0063 behind the best performing num-
ber of splitpoints. On the second folds, using 9 splitpoints
performed best followed by using 19 splitpoints. Using 3
splitpoints lacks 0.0047 in terms of rrmse behind the best
one and therefore is the fourth best method. Nevertheless,
the gap between different parametrizations seems to be big-
ger on the first folds than on the second ones. Regarding the
split of all tuning datasets into 2 folds, these results seem
to reflect the randomness in splitting the datasets.

After the optimization of the splitpoint parameter the
same procedure was employed to the left-out-parameter of
the algorithm. Here, the splitpoints were already fixed to
3 for the algorithm tuned on the first folds and to 9 for the
variant tuned on the second folds. To find the best value
also some intuitive parameters were used. Thus, the values
0, 0.01, 0.02, 0.03, 0.05, 0.1, and 0.2 were tested during
this optimization. The setting where all examples are cov-
ered by rules was included to make sure that is more effec-
tive to leave some parts of the data uncovered. Clearly, an
optimal setting is dataset-dependent. But it also depends on
the quality of the induced rules. For numerical target vari-
ables it can be useful to cover only those parts of the data
that share some common characteristics. For the remainder
of the data it could be beneficial to treat them independently
from their characteristics.

As can be seen in Table 1 (right table) two different pa-
rameters performed best on the two folds. Practically this
can be attributed to the same reasons that were already dis-
cussed during the optimization of the splitpoint parameter.
Thus, on the one hand the randomized split of the data into
2 folds of equal size could have manipulated the charac-
teristics of the datasets. On the other hand it could also
be possible that there is no unique best value for leaving
examples uncovered. The results also show that leaving
examples uncovered is mandatory for the performance of
the algorithm.

5.2 Optimization of the heuristics parameter
For the optimization of the heuristics parameter a frame-
work similar to the one introduced in [Janssen and
Fürnkranz, 2010a] was used. It employs a binary search to
find the best parameter and was proven to yield stable pa-
rameters for classification heuristics as shown in [Janssen
and Fürnkranz, 2010a].

The search is started with a range of intuitively appealing
parameters. Thus, the two extremes of 0 and 1 are tested
together with some values in between (0.1, 0.2, ..., 0.9). All
settings are evaluated by taking the average of the rrmse on
the 20 datasets presented in Section 4. Then the best per-
forming parameter is used for further inspection. There-
fore, an area around this parameter is inspected in more

6Note that the number of disjunct values for an attribute in the
data is rather small.

Figure 2: Parameters over rrmse for both folds of the tuning datasets

0.85
0.875

0.9
0.925
0.95

0.975
1

1.025
1.05

1.075
1.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Parameter α

R
R

M
SE

 (a) tuned on folds 1

0.885

0.91

0.935

0.96

0.985

1.01

1.035

1.06

1.085

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Parameter α

R
R

M
S

E

 (b) tuned on folds 2

detail. There are several choices to do this, but we de-
cided to evaluate 6 parameters around the best one. Those
are distributed equidistantly around the best parameter with
decreasing the step size from 0.1 to 0.01. This procedure
is executed recursively, so in the next step the 6 parameters
around the next best value are tested. The search stops if the
rrmse improvement falls below a threshold of t = 0.0005.
This choice was arbitrary but we believe that the effort that
has to be made to narrow down the parameter for the next
step of the search procedure is too high compared to the
performance gain the next execution may yield.

Figure 2 shows a graphical interpretation of the search
for both experiments. For both of them very low parameter
settings result in bad performance. When the parameters
are increased the performance becomes better as long as
the optimal setting is reached. After that it decreases again.

For the parameters that are optimized on the first folds
of the datasets (Figure 2 (a)) the curve shows some fluc-
tuations in the part located left of the best parameter. In
spite of this behavior the curve depicted in (Figure 2 (b)) is
monotonically decreasing in this area. For parameter set-
tings that are bigger than the best parameter the curve in the
left figure is now showing a monotone increase whereas it
shows more fluctuations when the parameter is tuned on the
second folds of the partitioned datasets.

Interestingly, the best parameters are very similar in both
experiments. This means that the parameters are stable
among different splits of the datasets. On the first folds
of these datasets the best parameter lies at 0.59 and on the
second folds it was 0.591. For the first folds the parameter
0.591 lacks only 0.007 behind in terms of rrmse. For the
second folds the difference in performance was 0.001.

Assumed that the best parameter lies somewhere in the
region of 0.6, consistency should be preferred over cover-
age for regression rules. This also holds for classification
rules where the preference of consistency is even stronger
than in regression. Nevertheless it is an interesting result
that the evaluation of a rule’s quality follows similar stan-
dards in classification and in regression.

6 Results
6.1 Splitpoint processing
Table 2 shows a comparison of the runtime of 2 different
splitpoint methods. At first, 3 equidistant splitpoints per
attribute were used. Then, 3 clustered splitpoints were em-
ployed. Evaluating all splitpoints was too costly7. All run-

7This is due to some huge datasets.

Table 2: Runtime of different splitpoint methods on the test
set

method runtime (in sec.)
3 equidistant splitpoints 2625.4
3 clustered splitpoints 1234.3

times depicted in Table 2 are the averages of 10 indepen-
dent runs on a dual Pentium 4 2.8 GHz processor with 2
GB RAM on the 9 datasets used for testing (cf. Section 4).

As can be seen in Table 2 the clustered splitpoint compu-
tation is more efficient than the equidistant method. At first
sight this may appear contrary to what could be expected.
Due to the much more simpler computation of equidistant
splitpoints this method should be faster than the clustering
method. But note that this evaluation was done by letting
the whole algorithm run on the 9 test datasets. Not sur-
prisingly the quality of the equidistant splitpoints is worse
compared to the clustered splitpoints. This results in a sig-
nificantly higher number of candidate rules that have to be
evaluated during the search for the best rule which can be
drastically reduced by using clustered splitpoints.

6.2 Comparison with other systems on the
tuning datasets

The main focus of the comparison is how well the algo-
rithm performs against other regression algorithms. Table 3
gives an overview of the different algorithms compared to
each other on the two folds using the rrmse. From now on
the tuned algorithm is referred by the name SeCoReg.

There are 4 other algorithms that are all implemented
in weka [Witten and Frank, 2005] which were used to com-
pare our system with. Clearly, some of them are much more
complex than our rather simple algorithm8. On the other
hand most of them employ more complex models, i.e., hy-
perplanes like the multilayer perceptron (MLP) or support
vectors like the SVMReg. The linear regression (Linear
Reg.) is also a rather simple algorithm that nevertheless
employs quite a good trade-off between runtime and error.
M5Rules uses rules to explain the data. These rules predict
linear models which makes the algorithm much more flexi-
ble because each rule is able to map the examples on many
different outcome values.

The parameters of all weka algorithms were left at de-
fault values. The reasons to select these 4 algorithms were
that our implementation had to prove that it is comparable

8Note that the algorithm neither has a pruning functionality
nor an optimization phase.

Table 3: Results in terms of average rrmse for different
algorithms on the tuning datasets

folds 1 folds 2
M5Rules 0.7425 0.8058

Linear Reg. 0.8145 0.9116
MLP 1.0154 1.3890

SVMreg 0.7917 0.8500
SeCoReg (folds 1) 0.8736 0.9291
SeCoReg (folds 2) 0.8976 0.8903

Figure 3: Comparison of all algorithms against each other
with the Nemenyi test. Groups of algorithms that are not
significantly different (at p = 0.05) are connected.

SeCoReg
MLP SVMreg

Linear Reg.

Critical Difference
1.02.03.04.0

M5Rules

(a) folds 1

SeCoReg
MLP

SVMreg
Linear Reg.

Critical Difference
1.02.03.04.0

M5Rules

(b) folds 2

in terms of error to other state-of-the-art systems. Another
reason to select these particular algorithms for benchmark
was the lack of freely available regression rule learning al-
gorithms. The only free system we found was REGEN-
DER and a comparison is given in Section 6.3.

In Table 3 the results of all algorithms on the two folds of
the tuning datasets are displayed. Results of both derived
SeCoReg-algorithms are shown together with their perfor-
mance on the data sets on which they were tuned (in italics).
Not surprisingly both variants of the algorithm that were
tuned on the respective folds are better than using them on
the left-out folds. The ranking of the algorithms is similar
on both experimental variants. The best one was M5Rules
followed by the SVMreg and the linear regression. The
SeCoReg was ranked on the 4th place in both experiments
(by average rrmse), only slightly behind the linear regres-
sion (lacking 0.0831 behind on the first folds and 0.0175
on the second folds). The Multilayer Perceptron had the
worst performance with a rather big gap to the next better
algorithm.

Figure 3 shows CD-charts for both experiments. Note
that the figure displays ranks averaged on all datasets. Only
the algorithm M5Rules was significantly better than the
SeCoReg in both cases.

6.3 Comparison with other algorithms on the
test sets

To validate the results on completely different datasets the
algorithm was also tested on 9 independent test sets (cf.
Section 4). This step is necessary to make sure that the
tuning datasets, even though they were split into two dis-
junct folds, were not overfitted during the parameter tuning
phase. Table 4 displays the results in terms of rrmse on the
test databases for all of the 4 weka algorithms and the two
configurations of the SeCoReg-learner. The ranking of the

Table 5: Results in terms of rrmse compared to RegENDER
on 7 datasets of the test set

algorithm avg. rrmse avg. rank
SeCoReg (folds 1) 0.8154 3.00
SeCoReg (folds 2) 0.8538 3.13

RegENDER (10 rules) 0.9008 3.88
RegENDER (100 rules) 0.9291 3.88

RegENDER (# rules from folds 1) 0.9221 3.75
RegENDER (# rules from folds 2) 0.9034 3.38

algorithms differs slightly compared to the results on the 20
datasets. Hence, on the test sets the SVMreg performs best
followed by the M5Rules-system. On the third place the
first SeCoReg-learner appears. It was only slightly worse
in performance compared to the M5Rules-learner. The next
best algorithm is the second SeCoReg-learner which has
achieved a marginal better rrmse than the linear regression.
As in the previous experiments the multilayer perceptron
was the worst algorithm.

Thus, on the test sets the tuned SeCoReg-algorithm
achieved better results than in the previous experiment.
Here, the best configuration of the algorithm is ranked in
third place. Note that the dataset meta shows huge stan-
dard deviations for some algorithms (M5Rules, linear re-
gression and MLP). We attribute this to the separation of
the data into the 10 folds of the cross validation.

Additionally to the error measurements a Friedman-Test
was employed like in the previous Section (cf. Section 6.2).
Contrary to the prior results, the Friedman-Test was not re-
jected at a p-value of 0.05 (the critical F-value was 2.196
but to reject the test it had to be bigger than 2.492). It would
have been rejected at a p-level of 0.1, but this was not sig-
nificant enough to include these results in the paper. For
this reason the Nemenyi-Test could also not be done on the
test sets. Practically, this means that the SeCoReg algorithm
does not differ significantly from the 4 weka algorithms at
a significance level of 0.05.

Table 5 shows a comparison to RegENDER [Dem-
bczyński et al., 2008]. The dataset auto-horse contains
missing class values which cannot be handled by RegEN-
DER. Therefore, this dataset was left out. In addition the
results on the dataset meta showed strong fluctuations as
mentioned before. For this reason this dataset was also left
out. RegENDER has a parameter to specify the number of
rules in the ensemble. To make a choice the algorithm was
tested with 10 and 100 rules and with the same number of
rules the two SeCoReg variants had found on each test set.
Clearly, using more rules will result in a lower error (cf.
[Dembczyński et al., 2008]) but we think it is fair to run
the algorithm with the same number of rules as used in the
SeCoReg-learner.

The SeCoReg-algorithm was slightly better in average
rrmse and the average rank was also better. Nevertheless,
a Friedman Test was rejected (p = 0.05) but the Nemenyi
Test showed that all algorithms were in the same equiv-
alence class (the critical distance extends over all algo-
rithms) and therefore do not differ statistically significant.

To sum up, both tuned variants of the presented algo-
rithm are not able to beat state-of-the-art systems. They
are rather situated in the middle of the performance of the
other algorithms (this holds at least for the test sets). Es-
pecially on the 9 test sets it became clear that the SeCoReg
rule learners are able to achieve a performance compara-
ble to the results of the 4 weka algorithms and RegENDER.

Table 4: Results in terms of rrmse for different weka algorithms and the SeCoReg-learners on the test set
dataset SVMreg M5Rules Linear Reg. MLP SeCoReg (tuned on folds 1) SeCoReg (tuned on folds 2)

auto-horse 0.32± 0.08 0.37± 0.14 0.32± 0.11 0.34± 0.10 0.52± 0.18 0.61± 0.11
auto93 0.66± 0.12 0.58± 0.19 0.67± 0.20 0.57± 0.19 0.65± 0.17 0.85± 0.29
cloud 0.39± 0.12 0.42± 0.16 0.40± 0.13 0.62± 0.33 0.61± 0.19 0.67± 0.15

delta-elevators 0.61± 0.01 0.60± 0.01 0.61± 0.01 0.63± 0.01 0.78± 0.03 0.77± 0.03
meta 0.92± 0.08 1.86± 1.58 2.33± 1.72 1.40± 0.90 1.00± 0.02 1.01± 0.03

r wpbc 1.03± 0.16 1.14± 0.19 1.04± 0.13 2.20± 0.56 1.35± 0.20 1.27± 0.18
stock 0.37± 0.05 0.14± 0.03 0.36± 0.04 0.20± 0.04 0.25± 0.03 0.26± 0.04

veteran 0.93± 0.15 1.23± 0.61 1.07± 0.36 3.01± 1.78 1.09± 0.22 1.21± 0.33
winequality-red 0.82± 0.03 0.81± 0.03 0.81± 0.03 0.95± 0.08 0.98± 0.09 0.95± 0.04

averages 0.6739 0.7942 0.8456 1.1017 0.8040 0.8438

Due to the rather simple design of the SeCoReg-algorithm
these results seem to be promising.

7 Conclusion and further work
In this paper a new rule learning algorithm for the task
of regression was presented. It was shown that the algo-
rithm performs comparable to different state-of-the-art al-
gorithms implemented in weka and RegENDER, a rather
new algorithm.

A new splitpoint generation method was introduced.
This method proved to support the quality of candidate
rules and even results in lower runtime compared to naive
methods like the generation of equidistant splitpoints. Nev-
ertheless, the number of generated candidate rules directly
depends on the number of splitpoints. But as shown in the
experiments at least for one configuration of the algorithm a
number of 3 splitpoints per numerical attribute was enough.

A novel rule learning heuristic was introduced that
clearly improves the algorithms performance due to its flex-
ibility in weighting the error of a rule with its coverage. An
optimal setting for this regression rule heuristic was pre-
sented and it proved to be stable since the parameter values
are nearly the same. An interesting observation is that, as
known from classification, in regression the rules consis-
tency also should be preferred over its coverage.

A promising path to optimize the algorithm would be
to adapt the advantages of algorithms like M5Rules which
predicts linear models in the head of each rule. On the one
hand the performance of the algorithm should be drastically
improved when using linear models instead of single target
values. On the other hand, much of the interpretability of
the rule set would be lost when doing so.

Acknowledgments
This research was supported by the German Science Foundation
(DFG) under grant no. FU 580/2-2.

References
[Asuncion and Newman, 2007] A. Asuncion and D.J. Newman.

UCI machine learning repository, 2007.

[Clark and Niblett, 1989] Peter Clark and Tim Niblett. The CN2
induction algorithm. Machine Learning, 3(4):261–283, 1989.

[Cohen, 1995] William W. Cohen. Fast effective rule induction.
In ICML, pages 115–123, 1995.

[Dembczyński et al., 2008] Krzysztof Dembczyński, Wojciech
Kotłowski, and Roman Słowiński. Solving regression by learn-
ing an ensemble of decision rules. In ICAISC ’08, pages 533–
544, Berlin, Heidelberg, 2008. Springer-Verlag.

[Demsar, 2006] Janez Demsar. Statistical comparisons of classi-
fiers over multiple datasets. Machine Learning Research, 7:1–
30, 2006.

[Demšar, 1999] D. Demšar. Obravnavanje numericnih proble-
mov z induktivnim logicnim programiranjem. Master’s thesis,
Faculty of Computer and Information Science, University of
Ljubljana, Slovenia, 1999. In Slovene.

[Friedman and Popescu, 2008] Jerome H. Friedman and Bog-
dan E. Popescu. Predictive learning via rule ensembles. Annals
Of Applied Statistics, 2:916, 2008.

[Fürnkranz and Flach, 2005] Johannes Fürnkranz and Peter
Flach. ROC ’n’ rule learning – Towards a better understanding
of covering algorithms. Machine Learning, 58(1):39–77,
2005.

[Fürnkranz, 1999] Johannes Fürnkranz. Separate-and-conquer
rule learning. Artificial Intelligence Review, 13(1):3–54,
February 1999.

[Holmes et al., 1999] Geoffrey Holmes, Mark Hall, and Eibe
Frank. Generating rule sets from model trees. In Twelfth Aus-
tralian Joint Conference on Artificial Intelligence, pages 1–12.
Springer, 1999.

[Janssen and Fürnkranz, 2010a] Frederik Janssen and Johannes
Fürnkranz. On the quest for optimal rule learning heuris-
tics. Machine Learning, 78(3):343–379, March 2010. DOI
10.1007/s10994-009-5162-2.

[Janssen and Fürnkranz, 2010b] Frederik Janssen and Johannes
Fürnkranz. Separate-and-conquer regression. Technical Re-
port TUD-KE-2010-01, TU Darmstadt, Knowledge Engineer-
ing Group, 2010.

[Karalič and Bratko, 1997] Aram Karalič and Ivan Bratko. First
order regression. Machine Learning, 26(2-3):147–176, 1997.

[Quinlan, 1992] Ross J. Quinlan. Learning with continuous
classes. In 5th Australian Joint Conference on Artificial In-
telligence, pages 343–348, Singapore, 1992. World Scientific.

[Torgo and Gama, 1996] Lus Torgo and Joo Gama. Regression
by classification. In In Proceedings of SBIA96, Borges, pages
51–60. Springer-Verlag, 1996.

[Torgo, 1995] Luis Torgo. Data fitting with rule-based regres-
sion. In In Proceedings of the 2nd international workshop on
Artificial Intelligence Techniques (AIT’95, 1995.

[Ženko et al., 2005] Bernard Ženko, Saso Džeroski, and Jan
Struyf. Learning predictive clustering rules. In In 4th Intl
Workshop on Knowledge Discovery in Inductive Databases:
Revised Selected and Invited Papers, volume 3933 of LNCS,
pages 234–250. Springer, 2005.

[Wang and Witten, 1997] Y. Wang and I. H. Witten. Induction of
model trees for predicting continuous classes. In Poster pa-
pers of the 9th European Conference on Machine Learning.
Springer, 1997.

[Weiss and Indurkhya, 1995] Sholom M. Weiss and Nitin In-
durkhya. Rule-based machine learning methods for functional
prediction. Journal of Artificial Intelligence Research, 3:383–
403, 1995.

[Witten and Frank, 2005] Ian H. Witten and Eibe Frank. Data
Mining — Practical Machine Learning Tools and Techniques
with Java Implementations. Morgan Kaufmann Publishers,
2nd edition, 2005.

