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Abstract
ACTIVEMATH is a web-based intelligent tutor-
ing system (ITS) for studying mathematics. Its
course generator, which assembles content to
personalized books, strongly depends on the un-
derlying student model. Therefore, a student
model is important to make an ITS adaptive. The
more accurate it is, the better could be the adap-
tation. Here we present which parameters can be
optimized and how they can be optimized in an
efficient and affordable manner. This methodol-
ogy can be generalized beyond ACTIVEMATH’s
student model. We also present our results for the
optimization based on two sets of log data. Our
optimization method is based on random-restart
hill climbing and it considerably improved the
student model’s accuracy.

1 Preliminaries
An intelligent tutoring system (ITS) is a computer system
that provides personalized support (either by giving feed-
back or instruction) to students performing tasks without
the intervention of human tutors. They can improve ed-
ucation quality by providing new possibilities (e.g. for
homework assignments or self-study opportunities). There-
fore, ITSs can be used to support teaching and diminish
the teacher shortage problem [Flynt and Morton, 2009;
Ingersoll and Perda, 2009] to some extent. ITSs can be per-
manently available, widely reusable, location-independent
and adaptive. Adaptivity is an important feature of ITSs: it
allows to focus the education to pedagogically useful con-
tent like teaching content the student has difficulties with
and keeping the student from working on too easy or too
difficult exercises. To make ITSs able to adapt to single stu-
dents, an underlying student model aiming to represent cer-
tain aspects of a student (most importantly his/her skills),
is required.

A student model represents variables and characteristics
of a learner which are relevant for educational purposes.
A typical learner variable is the student’s state of knowl-
edge concerning various concepts and competencies. This
is continuously adjusted with the learner’s progress over
time. When developing a student model several parameters
have to be determined which, in a first run, may be defined
in an ad hoc way. However, these values are usually not
appropriate and also wrong interrelations may cause prob-
lems. Instead, an evaluated configuration might improve
the accuracy of the student model, which in turn leads to a
better individualized learning experience.

How can we optimize parameters in a generic way?
First of all, the parameters of ACTIVEMATH’s student
model, also called Salient Learner Model (SLM), which
we want to optimize are described. We demonstrate how
we adapted the Random-Restart Hill Climbing (RRHC) al-
gorithm [Russel and Norvig, 2003] and used it to adjust
SLM. Finally, we provide evaluation results and describe
how the methodology can be generalized beyond SLM.

1.1 ACTIVEMATH and SLM
ACTIVEMATH is a web-based ITS for studying mathemat-
ics1 [Ullrich and Libbrecht, 2008]. It is being developed
at Saarland University and at the German Research Cen-
ter of Artificial Intelligence (DFKI) since the year 2000.
Its learning content (like definitions, examples, exercises
and explanations), are semantically encoded in an extended
OMDoc [Kohlhase, 2006]. The OMDoc documents are
then converted by the presentation component to the de-
sired output format (like HTML or PDF, cf. Figure 1).

Students cannot only browse through prerecorded static
books. With the course generator of ACTIVEMATH, learn-
ing objects can be organized into a book which is specific
to the student’s abilities: The generated book depends on
the student’s goals and on the modeled belief about the
learner’s competencies. The goal can be for example to
discover a new topic, revise an already known topic or sim-
ulate an exam. The content is selected according to special
rules of the course generator and depends on the knowl-
edge of the learner. The ACTIVEMATH course generator
aims to generate user-specific courses with relevant learn-
ing material and appropriate difficulty. For example, if the
student wants to discover a new topic but his competencies
on some of the prerequisites for the topic are poor, then the
course generator can include them in the personalized book
with an easy level of difficulty. The content of the person-
alized dynamic books are updated and restructured with the
student’s progress over time.

The exercise system of ACTIVEMATH runs interactive
problems with personalized feedback. Like other modules
in ACTIVEMATH, the exercise system publishes events to
notify the remaining parts of the system about the user in-
teractions. The student model of ACTIVEMATH [Faulhaber
and Melis, 2008] listens to these events and updates its be-
lief after every exercise step. It takes the learner’s achieve-
ments into account together with the exercise metadata (e.g.
exercise difficulty).

The most relevant metadata is the set of trained con-
cepts and cognitive processes. Addition of fractions or
Pythagorean theorem are examples for concepts. Concepts

1http://demo.activemath.org



Figure 1: A page of a book in ACTIVEMATH from a web-browser.

can be connected with each other with relations like the
prerequisite-relation specifying that in order to be able to
master one concept, the prerequisite-concept has to be mas-
tered first (e.g. the concept adding fractions with equal
denominator forms a prerequisite of the concept adding
fractions with unlike denominators). The cognitive process
metadata defines what process (like detecting errors or ap-
plying algorithms) is trained. We refer to the pair of a con-
cept and a cognitive process as competency. For example,
detecting errors about the Pythagorean theorem is a com-
petency. Another very important metadata that exercises
are required to be annotated with, is one of the five diffi-
culty values: very easy, easy, medium, difficult
or very difficult.

Out of a set of evidences, consisting of a concept, a
cognitive process, a difficulty value and the achievement
(whether the exercise was solved correctly), the student
model estimates students’ proficiencies. These evidences
are generated after each approach to a problem. For each
pair of a concept and a cognitive process (i.e. for each com-
petency) defined in the metadata of an exercise, evidences
are generated, propagated to related concepts (thus becom-
ing indirect evidences) and stored in its specific contain-
ers. The modeled belief about the student’s competency is
then updated based on the available evidences, where indi-
rect evidences have less influence on the resulting mastery
value. Figure 2 illustrates this process.

1.2 Item Response Theory in SLM
The calculation of the probabilities for different masteries
is based on the Item Response Theory (IRT) [Lord, 1980],
which describes the relationship between the probability
for a correct answer X to a mastery value (ability) θ:

Pi(X = correct|θ) = ci +
1− ci

1 + e−ai·(θ−bi)
(1)

The resulting function is called the item characteristic
curve (ICC). Equation 1 shows the three-parameter model
of the item response theory. The parameters are exercise
(item) specific where
• ai is the item discrimination factor,
• bi is the item difficulty,
• ci ∈ [0, 1] is the item guessing probability.

The item difficulty bi defines the location of the mastery
value θ where the probability of correct response is exactly
0.5, i.e. Pi(X = correct|θ = bi) = 0.5. Hence, the larger
bi is, the larger the mastery θ has to be to have a probability
of at least 50%.

The discrimination factor defines the steepness of the S-
shaped curve. Therefore, it describes how well it is differ-
entiated between learners having masteries below the item
difficulty (θ < bi) and those having masteries above the
item difficulty (θ > bi). Figure 3 shows different ICCs
with differing item difficulties.

The actual domain of the mastery θ, the item discrimina-
tion factor ai, and the item difficulty (or item location) bi
is R. However, if one restricts the domain of the item dif-
ficulty bi, then the most differing probabilities for different
mastery values θ will be around that range as well. This
is because of the nice property that Pi(X = correct|θ =
bi) = 50%. SLM makes use of this and restricts the domain
of θ and bi to [0.0, 1.0], which simplifies the interpretation
of difficulty values.

Furthermore, SLM restricts its calculation to those mas-
teries θ which are “near” the item difficulty (i.e. θ ∈
[bi − δ, bi + δ], where δ is the information radius). This
will keep the student model from assuming high mastery
values for a student who solved easy exercises only.

For more details on how the student model of ACTIVE-
MATH works, please refer to [Faulhaber, 2007; Faulhaber
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ties bi. The guessing probability ci is fixed to 0 and ai to
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and Melis, 2008; Doost, 2010].

2 Which SLM Parameters can be Adjusted?
Depending on the structure, design and implementation of
a student model, different ways of adjustments and opti-
mization possibilities emerge. This section presents most
of the student model parameters that have been selected
for the optimization process. Some of the parameters were
actually hard coded into the system. In order to discover
them, a thorough analysis of the implementation was nec-
essary.
Propagation Depth defines the maximum distance an ev-

idence is propagated along the graph of prerequisites
for concept relations. Too deeply propagated evi-
dences might cause the SLM to transfer the student’s
knowledge about one concept to other possibly too lit-
tle related concepts. However, with a completely de-
activated propagation we might lose possible accuracy
gains for concepts for which direct evidences are not
available yet.

Weighing Evidences. How strong shall we weigh direct
evidences compared to indirect ones when both are
available? Giving no weight to indirect evidences is
equal to having no propagation. However, giving them
too much weight might understate the significance of
direct evidences.

Evidence Container Size is the maximum number of
stored direct and indirect evidences per competency
and represents the forgetting factor. When this num-
ber is reached, old evidences are discarded in favor of
new ones.

Difficulty Mapping. What is the range [α, β] into which
the five difficulty values are mapped (every exercise
in ACTIVEMATH is annotated with one out of five
possible values). Probabilities received from the IRT
strongly depend on the difficulty of an exercise. An
arbitrary mapping might lead to misinterpretations of
difficulty metadata and negatively effect the mastery
estimations.

Default Discrimination Factor determines the curvature
of the sigmoid function, which converges to a step
function for high values making marginal masteries
more probable and mid-level masteries less probable.

3 Random-Restart Hill Climbing
Hill climbing [Russel and Norvig, 2003] is a greedy local
search algorithm and can be used for optimization prob-
lems. Hill climbing algorithms can find reasonable solu-
tions in large or infinite (continuous) state spaces for which
systematic algorithms fail.

Generally, when looking for a maximum of a function
(optimization problem), the hill climbing algorithm works
as follows:

1. Start at an arbitrary point

2. Calculate values for neighboring points

3. Move to the point with increased value

4. Terminate if no higher value could be found, other-
wise continue at 1

The standard problem with this algorithm is that it may
not find the optimal solution (i.e. the global maximum), but
only a local maximum. However, with an extension known
as random-restart one can increase the probability to find a
global maximum considerably [Russel and Norvig, 2003].
Starting the hill climbing algorithm over and over again
each time with randomly chosen initial states and saving
only the maximum of the new values improves the proba-
bility of finding the global maximum.

The complex structure of the student model and the pos-
sibly interrelated parameters make it difficult - if not prac-
tically impossible - to determine the optimal values for the
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Figure 4: A flowchart of the modified RRHC algorithm used for parameter optimization.

parameters by classic machine learning methods. For opti-
mizing the parameters mentioned in Sect. 2, the Random-
Restart Hill Climbing (RRHC) algorithm has been mod-
ified. Our version steadily switches between the several
different parameters. It modifies each parameter as long as
improvements could be found, then switches to the next and
returns to that parameter again as soon as all other param-
eters were taken into account. We restart with a new initial
random state if no parameter change yielded improvements
and terminate after a predefined maximal number of itera-
tions.

The continuous state space of parameters with real val-
ues requires additional attention. In order to find the maxi-
mum quickly, we need to make noticeable larger steps than
the smallest possible difference. This is done by using an
initial step size δ depending on the range size of possible
values for a parameter. The larger the interval, the larger
will be δ. The parameter is increased by δ as long as there
is any improvement. Then, the step size is refined by a fac-
tor 0 < α < 1 until the step size gets smaller than a prede-
fined threshold ε (we used 0.1 for α and 0.0001 for ε). We
continue with negative step sizes starting from −δ·α and
increase it by multiplying with α again until we reached a
value larger than −ε.

In short, we first start with a rough search by modifying
a parameter with larger steps, then we conclude with fine
tuning by modifying a parameter with smaller and smaller
steps until we reach a certain threshold for a minimum step
size. A flowchart for our modified version of RRHC is pre-
sented in Figure 4.

4 Evaluation and Results
An important question remains: what is the best function
for the optimization problem in order to find a good param-
eter configuration for a student model?

The student model can be evaluated by replaying it with
empirical data collected during another experiment. Based
on this data an experiment can be simulated for each possi-
ble configuration without organizing new ones. Its log data
can be rerun by going through all event entries chronolog-
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Figure 5: The evaluation process of the student model SLM
through replay of log data.

ically and passing them over to the student model. Dur-
ing the simulation process we can query the student model
about its belief and compare it to the actual achievements
before passing on this information to the student model.
Figure 5 depicts a diagram of this evaluation process.

We believe that the more accurate the student model is,
the better are the achievement predictions, i.e. whether a
student is able to solve a specific exercise or not. Our func-
tion for the optimization problem is therefore the achieve-
ment prediction accuracy which we strive to maximize. It
is calculated as shown in Figure 6, where n is the overall
number of exercise steps available (i.e. the total number of
predictions), achi is the actual achievement in the ith exer-
cise step2, and predi is the student model’s prediction for
the achievement of the ith exercise step.

For the evaluation, log data collected in the context of
the ATuF project [Eichelmann et al., 2008] (with 190 stu-
dents, 6th and 7th graders) and data from experiments of
the ALoE project 3 [Tsovaltzi et al., 2009] (with 77 stu-
dents, mostly 6th graders) has been used.

2It is 1 if the student’s answer was correct, otherwise 0.
3Funded by the German National Science Foundation (DFG)

(ME1136/7).
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Figure 6: Achievement Prediction Accuracy

4.1 Results
For the ATuF data, the original SLM had an achievement
prediction accuracy of 79%. This is already a highly im-
proved and optimized value, which was the result of several
years of experimentation. Still, with the parameter config-
uration obtained from the presented method, the accuracy
became 82%. In absolute numbers, this means that 470 out
of 15680 predictions which were wrongly predicted before
are now predicted correctly. For content selection based on
the estimated competencies, every wrongly selected item
(like selecting too easy or too difficult exercises, or leav-
ing missing prerequisites away) could make considerable
differences.

A statistical hypothesis test (one-sided) with a statistical
significance of 5% and the null hypothesis being the non-
improvement of the prediction accuracy yields a z-score of
−6.3. This means that we have to reject the null hypothe-
sis (since the z-score is less than −1.65) and assume that
the alternative hypothesis is true, namely that the accuracy
improvement by 3% is (strongly) significant. The evalua-
tion for the second data set, the ALoE data, revealed for
the original SLM an overall prediction accuracy of 69%4.
With the optimized parameter configuration the overall pre-
diction accuracy rose by 2% to 71%. This yields a z-score
of 2.1, which is statistically significant as well.

In the following, the single parameter values of the con-
figuration which yielded the highest accuracy will be men-
tioned briefly. Surprisingly, a propagation depth of one
produced almost the same accuracy as no propagation.
However, a depth of two or more worsened the result. This
would mean that we cannot really transfer the students’
knowledge level of one concept to related concepts except
to directly adjacent ones (without any gain, though). For
weighing direct and indirect evidences a ratio of 12: 1 was
obtained. As expected, the value of direct evidences is con-
siderably higher. Furthermore, keeping a maximum of six
evidences per competency produced the highest accuracy.
So did the interval [0.14, 0.86] for the difficulty mapping,
which means that the easiest exercises get a difficulty value
of 0.14 instead of 0. Finally, a discrimination factor of 9.6
showed to be best.

5 Related Work
Finding optimal parameter configurations is a problem
many student models have to tackle. The parameters may
belong to Bayesian networks, to metadata of exercises or
concepts (also known as rules), to the working mechanism
of a student model itself or to any other part related to
the student model. Corbett and Anderson conducted sev-
eral experiments to evaluate their knowledge tracing stu-
dent model. From the resulting data they fit the weights

4The reason why the prediction accuracy on the ALoE data is
on average about 10% lower compared to the ATuF data is that
the metadata quality of the ALoE data is worse and the number of
difficult exercises is higher.

for learning and performance parameters of each rule and
student [Corbett and Anderson, 1995]. Cen et al. have
shown that using an educational data mining technique
called Learning Factors Analysis (LFA) they could im-
prove the learning efficiency by 12% [Cen et al., 2007].
For this, they optimized knowledge tracing parameters of
the Cognitive Geometry Tutor based on older log data. In
the experiment with the optimized model students required
on average 12% less time to reach the same level.

Gong, Beck and Heffernan compared two techniques
for student modeling, Knowledge Tracing and Performance
Factor Analysis (PFA), in terms of their predictive accu-
racy and parameter plausibility [Gong et al., 2010]. For
fitting the knowledge tracing model, they used and com-
pared two different techniques: expectation maximization
and brute force. To minimize the problem of local max-
ima, they restart their fitting algorithm multiple times as
well. In their work, Gong et al reported that the brute force
method was not as good as the expectation maximization
method. Brute force is a very expensive and – because
of the continuous state space – an infeasible model fitting
method. Random-restart hill climbing (RRHC) is a method
in between expectation maximization and brute force. In
a brute force manner it evaluates and tries out different pa-
rameter configurations. However, it does not evaluate an
equally distributed sampled set of configurations, but in-
stead it modifies parameters stepwise in the direction of
expected improvement until a maximum is reached.

Local search methods, like hill climbing, are often
used for finding solutions efficiently, especially for NP-
hard problems like the traveling salesman problem [Aarts
and Lenstra, 2003]. Random-restart or multiple-restart
is a known solution for increasing the probability to ob-
tain a global maximum instead of a local one. The us-
age of dynamically varying step sizes is also not new: it
has been already reported in [Yuret and de la Maza, 1993;
Miller, 2000]. Basically, any local search algorithm could
have been used. RRHC, however, is because of its sim-
plicity and straight forwardness the first choice for being
adopted for optimizing several student model parameters.
Other possible techniques are, for example, simulated an-
nealing or genetic algorithms.

This work used the achievement prediction accuracy
to measure the performance of student models. This is
a common approach. Corbett and Anderson, for exam-
ple, used the prediction accuracy to evaluate their knowl-
edge tracing student model used in the ACT Programming
Tutor [Corbett and Anderson, 1995]. Their performance
prediction after every step depends on (1) the probabil-
ity that a rule is in the learned state, (2) a slip parameter
and (3) a guess parameter for the according rule. Des-
marais and Gagnon compared the prediction accuracy of
two cognitive student models: one based on a standard
Bayesian network approach and the other on a more con-
strained one [Desmarais and Gagnon, 2006]. Previous
versions of student models of ACTIVEMATH were evalu-
ated by the prediction accuracy as well [Faulhaber, 2007;
Faulhaber and Melis, 2008].

6 Conclusions and Future Work
This paper presented how the parameters of ACTIVE-
MATH’s student model had been optimized with the lo-
cal search algorithm known as random-restart hill climb-
ing. Several parameters were presented, which were then
optimized by a modified version of the RRHC algorithm.



The modified RRHC uses dynamic step sizes and steadily
switches between different parameters. The evaluation
function replays log data to measure the achievement pre-
diction accuracy of a configuration. The achievement
prediction accuracy improved significantly by 3% for the
ATuF data and by 2% for the ALoE data.

Until this work, the parameters of ACTIVEMATH’s stu-
dent model remained to be a manually chosen configura-
tion. The evaluated parameter configuration did indeed im-
prove SLM’s accuracy. Since the performance of the orig-
inal SLM was already quite good, an increase by 2% and
3% is an acceptable improvement. Nevertheless, improve-
ments by 5% and above would have been more convincing.

The presented methodology can be generalized to opti-
mize other user models as well. First of all, the set of pa-
rameters which have to be optimized has to be fixed. Ad-
ditionally, an evaluation method has to be defined — re-
playing log data and measuring the prediction accuracy is
just one possibility. Finally, RRHC can be used to find an
optimized parameter configuration.

In the future we plan to use log data obtained from other
projects using different exercises with participants of the
same age as well as more experienced participants. This
might help us to find out whether the obtained configura-
tion is specific to the young learners or to the used exercises
domain (which was fraction mathematics in both experi-
ments, ATuF and ALoE). We want to further analyze the
necessity of propagation and possible differences between
age groups.
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