
Using a Semantic Multidimensional Approach to Create a Contextual
Recommender System

Abdulbaki Uzun
Service-centric Networking

Deutsche Telekom Laboratories, TU Berlin
abdulbaki.uzun@telekom.de

Christian Räck
Competence Center FAME

Fraunhofer Institute FOKUS
christian.raeck@fokus.fraunhofer.de

Abstract
Item recommendations calculated by recom-
mender systems mostly in use today, only rely
on item content description, user feedback and
profile information. In modern mobile services,
however, contextual information and semantic
knowledge can play a significant role concern-
ing the quality of these recommendations. There-
fore, the SMART Recommendations Engine of
Fraunhofer FOKUS is extended by the SMART
Multidimensionality Extension and the SMART
Ontology Extension that enable the recommender
to incorporate contextual and semantic data into
the recommendation process. The demonstra-
tion of the SMART Ontology Extension visual-
izes that the preciseness of recommendations can
be increased by exploiting implicit and indirect
knowledge, classification and location informa-
tion gained from ontologies when generating rec-
ommendations in the scope of an exemplary food
purchase scenario.

1 Introduction
Today, people are confronted with a large amount of infor-
mation in the World Wide Web [Shenk, 1998]. Receiving
a small subset of desired and filtered content through stan-
dard search engines turns out to be very difficult. And it
becomes quite impossible, if user specific needs and inter-
ests should be taken into consideration.

Recommender systems handle this issue by filtering rel-
evant information and providing personalized content rec-
ommendations to users based on their profile and feedback.
Numerous recommendation methods were designed over
the years to improve the accuracy of recommendations.
The most popular ones are content-based and collaborative
filtering algorithms or hybrid approaches comprising both
them [Adomavicius and Tuzhilin, 2005].

The results delivered by hybrid methods are often ac-
ceptable. However, they only depend on content descrip-
tions and ratings given to items, and user profile informa-
tion. In a time when mobile and location-based services
become very popular, context information and semantic
knowledge can play a decisive role in order to significantly
improve the preciseness of personalized recommendations.
If John, for example, is vegetarian, eats only organic food,
tries to live economical and goes shopping nearby, it does
not make sense to recommend him groceries in stores far
away or only in discounters without taking his preference
for vegetarian and organic food into consideration. This

example shows that context as well as semantic informa-
tion (e.g. implicit knowledge about which food products fit
to certain eating preferences) are important to satisfyingly
answer a user’s grocery recommendation request.

In order to harness the potential of contextual and se-
mantic information, the generic recommender system of
Fraunhofer FOKUS, the SMART Recommendations En-
gine [Raeck and Steinert, 2010], has been extended by
two new recommender extensions. Inspired by the work
of [Adomavicius et al., 2005], the SMART Multidimen-
sionality Extension enhances the two-dimensional matrix
representation of recommender data by a multidimensional
recommendation model allowing the integration of addi-
tional contextual information when generating recommen-
dations. The SMART Ontology Extension, on the other
hand, enables the recommender to incorporate contextual
and semantic information gained from ontologies (e.g. im-
plicit and semantic knowledge about a user and his pref-
erences, location, time or ontological classification infor-
mation). For this purpose, the extension provides a tool to
exploit semantic data stored in ontologies and perform con-
text and semantic filtering on the recommender database
using several filters. Both extensions can be used indepen-
dently from each other or together depending on the given
scenario and application.

This paper is organized as follows: First, an overview
about related work in the field of context-aware and
semantic recommender systems is presented. Afterwards,
a background about the SMART Recommendations En-
gine is given. Following that, concepts for the SMART
Multidimensionality Extension are described. Section 5
explains the SMART Ontology Extension including the
automated mapping of ontological information into the
recommender’s data model. In section 6, the functionality
of the SMART Ontology Extension is demonstrated within
the scope of a food purchase scenario.

2 Related Work
Contextual and semantic information is incorporated in the
field of recommendations in various ways. A context-
aware collaborative filtering system is presented by [Chen,
2005], which generates item recommendations for a user
based on different context situations. In order to achieve
that, the traditional collaborative filtering is extended, so
that feedback of like-minded users in a similar context can
be used to recommend items to the active user in his current
context.

[Adomavicius et al., 2005] propose a multidimensional
recommendation model, in which additional contextual di-



mensions can be added to the traditional User x Item matrix
representation. Recommendations are calculated by using
the reduction-based approach, which reduces the problem
of multidimensional recommendations to a traditional two-
dimensional matrix in the required context, so that widely
known traditional recommendation techniques can be ap-
plied after the reduction is done.

Another methodology is suggested by [Farsani and Ne-
matbakhsh, 2006], which recommends semantic products
to customers in the context of eCommerce based on prod-
uct and customer classification via OWL.

[Kim and Kwon, 2007], on the other hand, developed an
ontology model with a multiple-level concept hierarchy for
a grocery store scenario with four different ontologies: a
product, location, consumer and record ontology. From the
product ontology, most relevant products are taken using
user information modeled in the consumer and record on-
tology. Recommended products are presented in a concept
hierarchy ranging from most specific to most broad. When
users select some of these concepts, the context of the re-
quest is subsequently refined enhancing the specificity of
the provided results.

Another interesting approach is demonstrated by [Yu et
al., 2006]. They present a context-aware media recommen-
dation platform called CoMeR, which uses an OWL ontol-
ogy context description, a N x M-dimensional model and
a hybrid processing approach to support media recommen-
dations for smart phones.

In another paper by [Setten et al., 2004], the integration
of a context-aware recommender system into the mobile
tourist application COMPASS is described, where users get
touristic information and services recommended based on
their interests and contexts.

COReS, which stands for context-aware, ontology-based
recommender system for service recommendation, is an-
other example. It was developed by [Costa et al., 2007] and
this recommender system extends the capabilities of the IN-
FRAWARE [Pereira Filho et al., 2006] service platform by
supporting service selection and user needs satisfaction for
a certain context.

Previous research activities are either focused on the
integration of context or semantic information. However,
incorporating both – context information and semantic
domain knowledge – would increase the preciseness of
recommendations decisively. The food scenario shows that
the integration of both types of data is necessary to satisfy-
ingly answer a recommendation request. For example, in
order to generate accurate grocery recommendations, the
system has to be aware of the location of the user (context)
and has to be capable of using implicit knowledge in order
to relate the user’s eating preferences to the right groceries
(semantic information). That’s why, Fraunhofer’s engine
was extended using both types of data.

3 SMART Recommendations Engine
The SMART Recommendations Engine is a generic recom-
mender system that enables internet businesses, rich media
and entertainment services or SMEs deliver a more person-
alized experience by providing recommendations in their
respective application domain. By offering a flexible, gen-
eral purpose algorithmic model, the engine makes it possi-
ble to formulate application specific recommendation al-
gorithms. These algorithms and the application specific
data model are declared at configuration time by assem-

bling selected components. By adding custom components
through the provided API, the capabilities of the recom-
mender can be extended in order to meet specific applica-
tion demands. These custom components can be built from
functional groups, such as basic mathematical operations,
similarity and relevance computations, sorting and filter-
ing, and data access.

In the system, data is represented in an entity-
relationship-like data model. An entity type that includes a
set of entities is named domain, whereas relations between
domain entities are represented by matrices (see Figure 1).
A user domain, for example, can contain all users, while
an item domain can comprise all items in a specific appli-
cation. Ratings given by a user to a certain item can be
represented by a rating matrix, whose rows and columns
are associated to the these domains.

Figure 1: Recommender Data Model

Recommendation algorithms calculate relevance values
for each User x Item pair. Differing on the given applica-
tion, the recommendation algorithm is assembled at run-
time configuration by defining a network of matrix trans-
formation components (e.g. a similarity computation com-
ponent). The matrix operations are applied on a data set in
a hierarchical manner leading to the estimated utility func-
tion at the top node of the tree. Figure 2 shows such a
generic algorithm hierarchy, where the nodes represent ma-
trix operations and data is propagated along the edges in
form of matrices.

Figure 2: Generic Algorithm Hierarchy

The engine also provides a custom query language called
Sugar Query Language (SuQL), which is used to request
recommendations and related data at runtime. Via SuQL
various recommendation algorithms can be selected and
combined. Constraints on the item set to be recommended
can also be specified, so that only items that fulfill these
constraints are included in the final recommendation. For
this purpose, the recommender already offers a variety of
sorting and selection filters, which can be used to alter the
result set by certain properties.

One example for a filter is the Proximity Filter, which in
combination with a Geo-Location typed domain, an Item x
Location matrix, a given center position and a maximum
range, is capable of selecting items (e.g. shops) in a given
geographic region. By using the lookup capabilties of
the SMART Ontology Extension (see section 5), items



can be filtered based on location constraints, like finding
all grocery products sold in shops located within a given
distance from the user’s current location.

4 SMART Multidimensionality Extension

Contextual information can be exploited in the recom-
mendation process by enhancing the level of dimensions
from the traditional two-dimensional paradigm to multiple
dimensions. Therefore the SMART Recommendations
Engine is upgraded by the SMART Multidimensionality
Extension, which is able to handle multidimensionality
and hence provide more precise recommendations.

4.1 Enhanced Data Model

This extension enhances the generalized data model of the
SMART Recommendations Engine for multidimensionality
purposes by binding more than two domains to a rating ma-
trix. Figure 3 shows the enhanced data model in an entity-
relationship notation.

Figure 3: Enhanced Data Model

However, the recommender is designed to work two-
dimensional; a matrix can only consist of two domains (one
row domain and one column domain). That’s why, the en-
hanced data model has to be adapted to the standard data
model of the recommender. By merging several domains
to one domain and hence mapping multiple dimensions
to a two-dimensional matrix, the two-dimensional recom-
mender data model can be kept with the advantage that
multidimensionality features can be utilized at the same
time (see Figure 4).

Figure 4: Merged Domains in the Enhanced Data Model

The two-dimensional matrix representation of multiple
dimensions can be done through serialization by use of
a hierarchical index. Each slice of the multidimensional
cube is stored into one two-dimensional matrix making
it possible to access the desired element with the help of
an index (e.g. Slice1.User#1). Figure 5 shows a general
MD-2D-Mapping for the enhanced data model.

Figure 5: General MD-Mapping to 2D

4.2 Multidimensional Recommendation
Algorithms

Various standard recommendation algorithms, such as user
or item-based collaborative filtering, can be extended by
the extension to multidimensional algorithms.

The standard user-based collaborative filtering algo-
rithm applied by the SMART Recommendations Engine, for
example, determines similar users by using ratings given
for items by them. Based on this similarity and on the
ratings given to items, predictions for new items are cal-
culated. This algorithm can be upgraded to a multidi-
mensional user-based collaborative filtering algorithm by
merging several domains to one column domain.

Assume that there is a rating matrix R[U :: C][I] in the
User :: Context x Item space, in which User :: Context
displays users with a certain context.

R[U :: C][I] = User :: Context× Item (1)

The similarity between users in the same context is deter-
mined based on their ratings for items by applying a simi-
larity transformation on R[U :: C][I]. This calculation also
identifies similarities between users in different context sit-
uations, which can be useful for later recommendations.

Sim(R[U :: C][I], R[U :: C][I]) =

User :: Context× User :: Context
(2)

Having a similarity matrix Sim[U :: C][U :: C] and the
rating matrix R[U :: C][I], a matrix product transformation
can be applied to calculate item predictions for users in a
certain context.

PredictionP [U :: C][I] =

Sim[U :: C][U :: C] ∗R[U :: C][I] =

User :: Context× Item

(3)

These predictions can be further processed and sorted
to generate new recommendations for users in certain con-
texts.

To better illustrate the new multidimensional user-based
collaborative filtering algorithm, an example query “John
wants to buy food for a soccer evening” is used. This query
includes three dimensions: the user (John), food and the
event dimension (here: soccer evening). For that matter,
the similarity between users, who bought food for a soccer
evening, is calculated using the User :: Event x Food rating
matrix twice for the similarity computation (see Figure 6).

By applying a matrix product transformation on the
calculated similarity matrix User :: Event x User :: Event
and the rating matrix, food predictions for John in the
context of a soccer evening can be identified. These
predictions can further be filtered and sorted based on
John’s eating habits, for example, and the rest result can



Figure 6: Exemplary Multidimensional User-based Collab-
orative Filtering Algorithm – Part 1

be presented as generated recommendations for John (see
Figure 7).

Figure 7: Exemplary Multidimensional User-based Collab-
orative Filtering Algorithm – Part 2

5 SMART Ontology Extension
Data that provides additional and useful information to the
traditional User x Item representation, such as taxonomies,
implicit and indirect knowledge about a user’s preferences
or location information can enhance the quality of recom-
mendations.

Semantic web ontologies offer complex knowledge rep-
resentation possibilites with which such semantic informa-
tion can be modeled (the Web Ontology Language (OWL)
[Dean and Schreiber, 2004]). Implicit knowledge, i.e.
knowledge that is not directly included in an ontology, can
be inferred using reasoning technologies.

The SMART Ontology Extension provides features with
which the SMART Recommendations Engine is capable of
exploiting semantic information from ontologies including
information gained from reasoning mechanisms. In that
way, implicit and indirect knowledge as well as taxonomies
become available when generating recommendations.

The extension is divided into two main parts: The first
part is the Ontology Mapping, where all relevant data avail-
able in pre-designed ontologies is mapped onto the data

model of the recommender. The second part performs se-
mantic filterings on the previously extracted data set using
the Ontology Filter in order to generate semantic recom-
mendations.

The functionality of the extension is explained using
pre-designed ontologies for the food scenario. It comprises
users with special eating habits (such as vegetarian, vegan
or organic), who want to buy food from grocery stores
nearby based on their eating preferences.

5.1 Ontology Mapping
The main constructs included in OWL ontologies are in-
dividuals, classes, a class hierarchy, object properties,
datatype properties and restrictions. These constructs can
be mapped onto the data model of the recommender, so that
the recommendation engine becomes capable of handling
ontology information.

Each class hierarchy in OWL is represented by a domain
with the name of its respective root class (e.g. Food, User
or GroceryStore). Individuals are items of a certain class
and are mapped as items of their respective class hierarchy
recommender domain. Furthermore, all classes in an ontol-
ogy become elements of the general Class domain. While
a Food x Class matrix, for example, shows to which classes
a food product belongs to, taxonomies become clearly rec-
ognizable in a Class x Class matrix. Figure 8 shows an
exemplary ontology class structure mapping for the food
scenario.

Figure 8: Root Class Representation

Object properties in OWL form a relation between in-
dividuals, whereas datatype properties build a relation be-
tween individuals and data types, such as Integer, String or
Boolean. Matrices display relationships between domains
and are therefore equal to object and datatype properties.
The domain and range an OWL property has are both repre-
sented as domains in the recommender and their values are
elements of these domains. If a property’s domain or range
is defined as an ontology class, the recommender domain
name corresponds to the class’s name as well. Otherwise,
it corresponds to the property’s name.

In the example of Figure 9, the property eatingHabit has
a domain named User and data range values, such as Ve-
gan, Vegetarian or Halal. Therefore the recommender do-
mains are User and EatingHabit (name of the OWL prop-
erty) defining a matrix. The values in the matrix are also di-
rectly mapped from the ontology and represent the assigned
property values to individuals (e.g. John eatingHabit Vege-
tarian).

Based on the Ontology Mapping naming conven-
tions, the Ontology Mapping tool automatically creates
a recommender-compliant database including domains,



Figure 9: Datatype Property Representation

matrices and filters. Knowledge gained by reasoning
mechanisms is also exported via the tool making it possi-
ble to exploit implicit knowledge in the recommendation
process. As seen in the screenshot of the tool (Figure 10),
the left part of the GUI represents the Ontology Import
and Ontology Export functions, whereas the right part
comprises all functions concerning the recommender.

Figure 10: Ontology Mapping Tool

5.2 Ontology Filter
After successfully exporting ontology data into the recom-
mender’s database, the Ontology Filter can process the on-
tology information in the engine by performing a semantic
filtering. This new filter extends the available filter list of
the SMART Recommendations Engine and makes it possi-
ble to query implicit and indirect ontology knowledge at
runtime.

Two different matrix operations are provided by the On-
tology Filter, the Concept Lookup and the Matrix Lookup.
In order to accomplish their task, both lookups use stan-
dard set operations, which are also features of the Ontology
Filter. The Concept Lookup uses the Union and Intersec-
tion set operations, while the Existential quantification and
Universal quantification are utilized by the Matrix Lookup
operation. If needed, the result set delivered by the Ontol-
ogy Filter can be inversed by the Not set operation. This
can be helpful in order to determine all products that can
be eaten by John instead of all that are forbidden for him,
for example.

Ontology concepts can be looked up in the recommender
by using the Concept Lookup, which needs at least two dif-
ferent matrices for the operation. Hereby, the column do-
main of the first matrix has to be the row domain of the
second matrix. Applied on the first matrix, the Concept
Lookup filters certain column elements for one single row

element based on given constraints. These constraints can
be generated by any available SMART Recommendations
Engine filter, such as the Existing or Feature filters. The
filtered column elements – now selected rows in the row
domain of the second matrix – build the basis for further
operations. All selected rows will be processed again indi-
vidually depending on given filters. The calculated result
sets of each selected row will be returned and will then be
either unified or intersected based on the selected set oper-
ation (Union or Intersection). Figure 11 shows a Concept
Lookup example, in which ingredients are looked up that
are not allowed to be eaten by John.

Figure 11: Concept Lookup Example

The Matrix Lookup filters information in a matrix based
on a given column domain result set of another matrix.
Therefore, it also requires the use of two different matrices,
whereas the column domain of the first matrix remains the
column domain of the second matrix. Rows of the second
matrix will be filtered based on the given column domain
result set and a predefined set operation (existential quan-
tification or universal quantification). The result is one set
of filtered row elements. In Figure 12, an exemplary Ma-
trix Lookup can be seen. All food products are looked up
that are forbidden for organic eating people.

Figure 12: Matrix Lookup Example

An overview of all supported operations of the Ontology
Filter is given in Table 1.

Complex recommendation queries require combining
both lookups to single a Concept and Matrix Lookup
operation, which is exemplary demonstrated in section 6.

6 Demonstration
Powerful contextual/semantic recommendations can be
computed by the recommender using the SMART Ontology
Extension in combination with the Proximity Filter. The
ontology data present in the database of the SMART Recom-
mendations Engine facilitates the recommendation query



Filter Matrix Ops. Set Ops.

Ontology Filter
Concept Lookup Union

Intersection

Matrix Lookup Existential
quantification

Universal
quantification

Not

Table 1: Ontology Filter Operations

requests of a user by reducing his effort to manually de-
scribing his personal needs and interests in a detailed way.
In conjunction with the Proximity Filter, the recommenda-
tions are also filtered by their location leading to a great
user experience when using a mobile shopping service, for
example. This function is going to be demonstrated in this
section by taking the following mobile grocery shopping
service scenario as a basis:

Assume that John is vegetarian and eats only organic
food products. He wants to buy groceries nearby his lo-
cation and that’s why he wants his shopping application to
give him recommendations based on the food categories he
prefers. After the selection of food categories for his shop-
ping cart, John gets food products recommended for each
category fitting his eating preferences and sorted by their
relevance based on John’s previous purchases. The grocery
stores that sell these products and are in a certain range to
John are also listed.

Eating preferences, such as eating vegetarian or organic,
include some sort of implicit and indirect knowledge. For
example, in order to be able to specify vegetarian prefer-
ences, the system must know what kind of food vegetar-
ians do not eat. It further has to have the information,
which ingredients are included in each grocery, so that non-
vegetarian food can be filtered based on the list of non-
consumable ingredients. Since semantic ontologies are pre-
destined to model this kind of dependencies, three ontolo-
gies were designed including a complete data set to map
relevant information given in the food scenario.

The food-ingredient-shop ontology consists of a classi-
fication of food categories, concrete grocery products in-
cluding their ingredients and shops, in which they can be
found. The eatinghabit-ingredient ontology, on the other
hand, models relations between certain eating preferences
and the ingredients that are either allowed or forbidden
to eat. User profiles are stored in the user-profile ontol-
ogy. All data modeled in these ontologies is exported into
the recommender database via the Ontology Mapping tool.
Figure 13 shows parts of the created data model after a suc-
cessful export.

Using the SuQL, the SMART Recommendations En-
gine can now provide contextual/semantic recommen-
dations based on the available data set and the im-
plemented recommendation algorithms. For the food
scenario, assume that John wants to buy snacks and
bread in the range of 2 kms from his location and
that he already purchased the brown bread product
Naturkind SonnenblumenVollkornbrot Geschnitten. The
SuQL query is constructed as follows: At first several se-
mantic filterings are performed using the lookup operations
several times in order to identify all snack and bread prod-

Figure 13: Food Scenario Ontology Data Model

ucts that fit John’s eating preferences and his location. Af-
terwards, these elements are sorted by their relevance and
limited to a certain number depending on the relevance pre-
dictions calculated by the recommendation algorithms.

Figure 14: Concept and Matrix Lookup

Figure 14 shows a semantic filtering example for John, in
which the Ontology Filter first performs a Concept Lookup
in the User x EatingHabit matrix that looks up his eating
preferences. In the second matrix (EatingHabit x Ingre-
dient), John’s eating preferences (vegetarian and organic)
are mapped to the ingredients. (Note: Due to the fact
that organic food products cannot be identified by their
ingredients, artificial ingredients, such as Ing Organic or
Ing NotOrganic were created and related to the food prod-
ucts.) The Matrix Lookup then looks up all groceries in the
Food x Ingredient matrix for vegetarians and organic eating
people individually. Finally, both result sets are unified to
one single result set and inversed by the Not set operation
in order to get a set of groceries, which can be eaten by
John. These groceries are also filtered by their categories,
so that only snacks and bread products remain.

Another semantic operation in form of a Matrix Lookup
is utilized, so that all grocery stores near to John’s location



that sell these food products can be looked up. This is done
by using the Proximity Filter, where the location of John is
specified as well as the range to look for. All grocery stores
near to John’s position are delivered to the Matrix Lookup,
which then performs a lookup to find all filtered snacks and
bread products that are available in these shops.

In a final step, the recommendation algorithm is used in
the recommendation process. Even though the engine can
also generate recommendations based on different collab-
orative filtering algorithms, this paper focuses on an ex-
tended version of the content-based filtering approach us-
ing the ontology taxonomy as content meta-data. This ap-
proach – named as the ontology-based filtering algorithm –
calculates relevance predictions using the similarity of food
products based on their cagetory as content meta-data (e.g.
brown bread is more similar to white bread than to snacks)
and the implicit user feedback given by users automatically
when purchasing items. This user feedback affects the final
recommendations in that way that groceries of a category
the user has already bought products before become more
relevant to him than products of other nodes in the tree.

The ontology taxonomy stored in the Food x Class ma-
trix is used to compute a similarity between groceries by
means of their categories leading to a food similarity ma-
trix with the dimensions Food x Food. User x Food rele-
vance predictions based on the taxonomy information can
be gained by applying a matrix product transformation on
the User x Food feedback matrix and the Food x Food sim-
ilarity matrix (see Figure 15).

Figure 15: Ontology-based Filtering Algorithm

Figure 16 shows the SuQL recommender
response to John’s query. John bought
Naturkind SonnenblumenVollkornbrot Geschnitten before,
which is from the bread product category BrownBread.
This and all other BrownBread products are most relevant
to him. The relevance value decreases the more vegetarian
and organic bread products are in other nodes of the Bread
tree. There is only one snack fitting his eating preferences
with a low relevance value since John did not purchase
any snacks yet. As a result, five bread products and one
snack are presented in combination with the grocery stores
nearby that sell these products.

7 Discussion of the Approach
One way to compare the presented approach with
widespread memory-based and model-based recommenda-
tion algorithms is to compare the accuracy of these ap-
proaches based on a common metric such as the mean av-

Figure 16: Ontology-based SuQL Recommender Response

erage error (MAE). For that, a suitable set of data points
for training and testing is needed. The chosen application
domain of the presented demonstration scenario was pre-
determined by the project’s context in which our approach
was developed. This context did not provide us with a suit-
able data set for this kind of practical testing. However,
a closer examination of our approach shows that a bench-
mark recommendation algorithm, which has been adapted
to make use of the product hierarchy that is stored in the
ontology, provides better relevance values by taking the re-
lation of different food items into account. The relevance
values of unrelated items decrease in less relevant or un-
suitable nodes of the product hierarchy, so that the overall
recommendation quality in terms of the achieved accuracy
increases.

8 Conclusion

This paper introduced the generic recommender sys-
tem, the SMART Recommendations Engine of Fraunhofer
FOKUS, which is capable of providing recommendations
for different types of applications. In order to make the
engine meet the recommendation quality requirements of
modern mobile services, the recommender was extended
by two new extensions. The SMART Multidimensionality
Extension provides multidimensionality capabilities to the
so far two-dimensional recommender system. This upgrade
enables the recommender to deal with additional context
dimensions in order to generate more accurate recommen-
dations taking user’s current contextual situation into ac-
count. The SMART Ontology Extension, on the hand, ex-
ploits semantic ontology data by exporting all relevant in-
formation given in pre-designed application-dependent on-
tologies into the data structure of the SMART Recommen-
dations Engine enabling the recommender to use semantic
knowledge or ontology taxonomy information for recom-
mendation purposes.

The demonstration showed that in conjunction with the
Proximity Filter, the SMART Ontology Extension provides
an added-value to the engine by generating semantic and
contextual recommendations.



References
[Adomavicius and Tuzhilin, 2005] Gediminas Adomavi-

cius and Alexander Tuzhilin. Toward the next generation
of recommender systems: A survey of the state-of-the-
art and possible extensions. IEEE Trans. on Knowl. and
Data Eng., 17(6):734–749, 2005.

[Adomavicius et al., 2005] Gediminas Adomavicius,
Ramesh Sankaranarayanan, Shahana Sen, and Alexan-
der Tuzhilin. Incorporating contextual information
in recommender systems using a multidimensional
approach. ACM Trans. Inf. Syst., 23(1):103–145, 2005.

[Chen, 2005] Annie Chen. Context-aware collaborative
filtering system: predicting the user’s preferences in
ubiquitous computing. In CHI ’05: CHI ’05 extended
abstracts on Human factors in computing systems, pages
1110–1111, New York, NY, USA, 2005. ACM.

[Costa et al., 2007] A.C. Costa, R.S.S. Guizzardi,
G. Guizzardi, and J.G.P. Filho. Cores: Context-aware,
ontology-based recommender system for service recom-
mendation. 19th International Conference on Advanced
Information Systems Engineering (CAISE07), 2007.

[Dean and Schreiber, 2004] M. Dean and G. Schreiber.
Owl web ontology language reference, 2004.
http://www.w3.org/TR/owl-ref/.

[Farsani and Nematbakhsh, 2006] H.K. Farsani and
M. Nematbakhsh. A semantic recommendation
procedure for electronic product catalog. Interna-
tional Journal of Applied Mathematics and Computer
Sciences, 3:86–91, 2006.

[Kim and Kwon, 2007] S. Kim and J. Kwon. Effective
context-aware recommendation on the semantic web.
International Journal of Computer Science and Network
Security, 7:154–159, 2007.

[Pereira Filho et al., 2006] J.G. Pereira Filho, R.M. Pes-
soa, and C.Z. Calvi. Infraware: A support middleware
to context-aware mobile applications (in portuguese). In
Proceedings of the 24th Simpsio Brasileiro de Redes de
Computadores, 2006.

[Raeck and Steinert, 2010] Christian Raeck and Fabian
Steinert. Fraunhofer institute fokus, smart recommen-
dations engine, 2010. http://tinyurl.com/3xdsffz.

[Setten et al., 2004] Mark Van Setten, Stanislav Pokraev,
Johan Koolwaaij, and Telematica Instituut. Context-
aware recommendations in the mobile tourist applica-
tion compass. In In Nejdl, W. and De Bra, P. (Eds.).
AH 2004, LNCS 3137, pages 235–244. Springer-Verlag,
2004.

[Shenk, 1998] David Shenk. Data Smog: Surviving the
Information Glut. Harper San Francisco, 1998.

[Yu et al., 2006] Zhiwen Yu, Xingshe Zhou, Daqing
Zhang, Chung-Yau Chin, Xiaohang Wang, and Ji Men.
Supporting context-aware media recommendations for
smart phones. IEEE Pervasive Computing, 5(3):68–75,
2006.


