
Abstract

Recommendation Systems are central in current
applications to help the user find useful informa-
tion spread in large amounts of post, videos or
social networks. Most Recommendation Systems
are more effective when huge amounts of user
data are available in order to calculate similari-
ties between users. Educational applications are
not popular enough in order to generate large
amount of data. In this context, rule-based Rec-
ommendation Systems are a better solution.
Rules are in most cases written a priori by do-
main experts; they can offer good recommenda-
tions with even no application of usage informa-
tion. However large rule-sets are hard to main-
tain, reengineer and adapt to user goals and pre-
ferences. Meta-rules, rules that generate rules,
can generalize a rule-set providing bases for
adaptation, reengineering and on the fly genera-
tion. In this paper, the authors expose the bene-
fits of meta-rules implemented as part of a meta-
rule based Recommendation System. This is an
effective solution to provide a personalized rec-
ommendation to the learner, and constitutes a
new approach in rule-based Recommendation
Systems.

1 Introduction

Nowadays, when the amount of information is becoming
over-exceeding, Recommendation Systems emerge as the
solution to find the small piece of gold in mountains of
garbage. In electronic commerce, knowledge management
systems, social networks, and other fields and markets,
they help users find useful products, lessons or contribu-
tions. There are many inputs which can be used as infor-
mation sources like i.e. user similarities with other users,
user profile, and user preferences. All these inputs provide
the system with valuable data to suggest the user the best
way to follow or the most appropriate choice. Further-
more, people ratings [Rocchio, 1971] are another impor-
tant source of information for Recommendation Systems.

Other sources of information are i.e. user interests,
goals, and objectives, all of them more useful for educa-
tional applications. However, educational applications
lack of enough amounts of data to establish user similari-
ties in a precise way. In this case, recommendations are
based on information stored in a user model which is ex-
tended explicitly or implicitly. There are also hybrid ap-

proaches which ask some minimum information to the
user and the rest is obtained in an implicit way.

For educational applications rule-based Recommenda-
tion Systems have proved as more useful than other sys-
tems [Abel et al., 2008]. In general acceptable recommen-
dations can be obtained with a small amount of informa-
tion. However, when the system achieves a better know-
ledge of the user, recommendations increase precision
since rules evolve in parallel or new ones are included to
the rule-set. In general expressing user preferences, goals
and interest with rules can be difficult [Anderson et al.,
2003] to solve this problem complex and large rule-sets
are generated. This solution carries another problem: the
size and complexity of the rule-set can be unaffordable. In
addition, it would be desirable to generate rules based on
data extracted from a database or from the user, increasing
this way user adaptability. Such generation could also be
on the fly, allowing the rule-set to be up to date.

In this paper we propose a solution to this problem by
the introduction of a new abstraction level: meta-rules,
which provide foundations for effective adaptive and per-
sonalized processes, such as in, e.g. learning. This ap-
proach has been implemented in the context of Meta-
Mender, our meta-rule-based Recommendation System. In
this paper, we also describe the Meta-Mender architecture
and implementation to contextualize the meta-rules ap-
proach.

2 Background and Related Work

In the field of educational recommendations there are ap-
proaches like [El Helou et al., 2009] which use a modified
page ranking algorithm for the generation of recommen-
dations. The algorithm considers actors, activities and
resources as main entities. Here user’ activity is used to
create a directed graph representing the entities and links
between them are generated. Later a rank is assigned to
nodes and this information is used to generate recommen-
dations for a user query. This work is valuable for us be-
cause in general meta-rules use as input the user’s activity
for the automatic generation of rules. This input comes as
in the referenced paper from actors, activities and re-
sources. The main difference is that in our approach it will
be generated a set of rules instead of a directed graph.

In the field of rule-based recommenders there are some
relevant reports in the literature [Abel et al., 2008], for
example, describes a rule based Recommendation System
for online discussion forums for the educational online
board Comtella-D. Actually the system is able to call sev-
eral encapsulated recommenders, collaborative filtering or

Meta-rules: Improving Adaptation in Recommendation Systems

Vicente Arturo Romero Zaldivar
1
 and Daniel Burgos

1,2

1
Atos Origin SAE, Albarracin 25, Madrid 28037, Spain

{vicente.romero, daniel.burgos}@atosresearch.eu

www.atosresearch.eu
2
International University of La Rioja

Gran Via Rey Juan Carlos I 41, 26002 Logroño, La Rioja, Spain

www.unir.net

content-based recommenders, and the rules decide accord-
ing to the amount and type of user data which recom-
mender should be called. In doing so, the rules define a
meta-recommender which is very interesting but tangen-
tial to this work.

An advantage of rule-based recommenders against oth-
er approaches is how easy it is to generate explanations
for these systems. In many cases, it is almost impossible
to explain to the user how a Recommendation System has
derived a conclusion. If the user is not sure of a given
recommendation and-or prefers to receive some logic-
supported arguments which help him to choose a given
solution, rules-based systems are the best ones prepared to
solve this issue. This problem is usual in automated colla-
borative filtering systems [Herlocker, 1999], where the
lack of explanations decreases the system acceptance and
affects user trust.

RACOFI [Anderson et al., 2003] is defined by its au-
thors as a rule-applying collaborative filtering system.
This system is a hybrid conformed by a collaborative fil-
tering recommender plus a rule-based recommender. It
was designed for recommending Canadian music but its
authors argue that the system is content independent.
RACOFI uses rules to modify, for example, ratings of
items based on item similarity. This means that if a user
rates an album as highly original, other albums’ originali-
ty of the same author will be incremented. This paper is
very useful for us because it contains a large set or rules
which will be used to prove the synthesis power of a me-
ta-rule approach.

With regards to meta-rules, we have not found anything
similar to our proposal. Initially used by LISP [McCarthy
et al., 1985] and other languages, the closest concept is
rule templates, followed by Open Rules

1
 and the Object

Oriented RuleML
2
 approach of handling rules as data,

thus generating entire rules from its component parts.
These approaches are very valuable. However, our ap-
proach of producing rules using imperative programming
comprises these two approaches and, at the same time, it
seems to be more powerful. For instance, Meta-Mender
can easily generate meta-rules, or other supplementary
features, easily. In addition, as it will be shown in the next
sections, using meta-rules in Rule-based Recommender
Systems is not common, and it provides other benefits like
maintainability, reengineering and on-the-fly generation.
Finally, the introduction of another level of abstraction is
very valuable for adaptation and performance.

For the implementation of a rule-based recommender
using a rule-management system can be of great help. In
this respect, Meta-Mender makes use of DROOLS
[DROOLS] as rule engine. DROOLS is a business rule
management system (BRMS) with a forward chaining
inference-based rules engine (the so-called rule system).
This system makes use of an enhanced implementation of
the Rete algorithm [Forgy, 1982]. DROOLS is designed
to allow plug-able language implementations. Currently,
rules can be written in Java

3
, MVEL

4
, Python

5
, and

Groovy
6
. It is also possible to write functions to be ex-

ecuted as the consequence of any rule; this feature has

1 http://openrules.com/index.htm
2 http://ruleml.org/indoo/indoo.html
3 http://www.sun.com/java/
4 http://mvel.codehaus.org/
5 http://www.python.org/
6 http://groovy.codehaus.org/

been used to generate rules from meta-rules. It is also
possible to assign a priority to rules, which is a way to
address the execution order by the rule designer.

3 The Meta-Mender Architecture and Im-

plementation

As aforementioned, the Meta-Mender Recommendation
System uses DROOLS as the rule engine. This rule sys-
tem works as follows, first it is required to feed the engine
with a set of rules (or meta-rules in this case); these meta-
rules are defined by the professor or by the technical team
using the application requirements. To define meta-rules
is a more complex task than to define rules. In this re-
spect, future research will be done in order to generate
meta-rules automatically. A meta-rule example will be
shown in the next subsection. Later some facts should be
added to the engine. These facts are extracted commonly
from a database, be it relational or ontological. As the
facts are inserted, rules antecedents are checked for com-
pleteness and once the engine is started, rules that fulfill
its antecedents are fired and the corresponding conse-
quences are executed. The order of execution is arbitrary,
so rule priority must be stated if the order of execution is
important for the final result. In our case the order is im-
portant because the output of this iteration will be a file of
rules and these files have a structure, so the rules that gen-
erate the header must be executed before the rules that
generate the body. The output is used for a second itera-
tion from which the final recommendations are obtained.
See Figure 1 for a simplified representation of the recom-
mender architecture and Figure 2 for an example of a me-
ta-rules file, this file can generate rules for recommending
the next course to follow in a .LRN educational applica-
tion. See that at the consequence of the meta-rules a func-
tion is called, this function receives some information that
allows it to write the rules wanted.

Figure 1. The Meta-Mender Architecture

It is worth mentioning that in DROOLS, rule conditions

cannot contain functions, this is a common issue in rule
systems the behind reason is performance. The condition
is formed by a conjunction of patterns that must be
matched by the inference algorithm. These patterns cor-
respond at the end with object instances. So rule condi-
tions are in a way fixed and must be defined statically.
The only way to adapt a rule-set to changing conditions is
by generating rules dynamically. These changing condi-
tions can be:

• Changes in the application architecture, this includes

the addition of a new forum or social network.

• Changes in membership conditions, access restric-

tions, or similar.

• Changes in model, new classes addition, modifica-

tion of existing classes, etc.

It is clear that a static defined condition cannot cope
with all these changes. So if there is a way for generating
rules according to current system conditions and proper-
ties, it could save time and effort as long as increase adap-
tation. See Figure 3 for an example of a rules file obtained
from the meta-rules file of Figure 2. In this figure it can be
noted that the recommendation list is created as rules con-
sequences are executed. The function AddRecommen-
dedCourse() builds this list and the parameter (10 -
$courseLevel) allows giving more priority to those
courses with a lesser level of complexity. This criterion
can be personalized to every student.

Meta-rules can handle changing conditions. Different
rules can be generated depending on user data, system
properties, etc.; also rules priority can be different which
implies different recommendations.

package service

//global variables definitions

global java.lang.String filePath;

//rules

rule Header

//empty antecedent, executes always

 when

 then

 WriteHeader(filePath);

end

rule CourseSequenceRule

 salience -1 //priority

 when //antecedent

 //classId is an object field

 LRNClassData($classId : classId,

$className : className)

 LRNStudentData($studentId :

 studentId,

 $studentName : studentName)

 LRNClassPerStudent(classId ==

 $classId, studentId == $studentId)

 then

 WriteClassMembershipRule(filePath,

 $studentName, $className);

end

//function implementation

function void WriteHeader(

String filePath) {

 ...

}

function void WriteClassMembershipRule(

String filePath,

String studentName,

String className) {

 ...

}

Figure 2. A Meta-rule File

Rule output can be related with rule priority since it
will be possible to order the results and give the user a list
of recommendations ordered by priorities.

4 Practical Implementations of the Meta-

Mender Recommendation System

The Meta-Mender recommender is been used at present as
part of two projects. The first one, TELMA

7
, is focused on

the application of Communications and Information
Technologies in lifelong training of surgeons of Minimal-
ly Invasive Surgery (MIS).

TELMA develops an online learning environment
which manages the content and knowledge generated by
users in an efficient way. TELMA creates a new training
strategy based on knowledge management, cooperative
work and communications and information technologies
aiming to the improvement of the formation process of the
surgeons of MIS.

In order to cover all these needs and achieve its goals,
TELMA develops a cooperative and adaptable learning
platform. This platform is composed of a training system
which integrates a tool for the authoring of didactic mul-
timedia content, a Recommendation System and a social
network. The Recommendation System, Meta-Mender,
manages the knowledge generated by the users creating
the foundations for adaptive learning. The learning plat-
form allows the construction of a complete knowledge
base thanks to the reuse and sharing of the knowledge
generated for the professionals who access the learning
system.

package service

global domain.RulesOutData outData;

rule MathI

 when

 UserData($userName : name,

 $userId : id)

 Course($courseLevel : courseLevel,

 $courseName : name, id == 1)

 not (TotalCoursePercentage(userId ==

 $userId, courseId == 1))

 then

 outData.AddRecommendedCourse(

 $courseName, 10 - $courseLevel,

 $userName);

end

rule AlgebraI

 when

 UserData($userName : name,

 $userId : id)

 Course($courseLevel : courseLevel,

 $courseName : name, id == 2)

 not (TotalCoursePercentage(

 userId == $userId, courseId == 2))

 exists (TotalCoursePercentage(

 userId == $userId, courseId == 1))

 then

 outData.AddRecommendedCourse(

 $courseName, 10 - $courseLevel,

 $userName);

end

Figure 3. A Rules File Obtained from the Meta-rules

File of Figure 2

The second project, GAME·TEL

8
, is focused on the

creation of a system for the design, development, execu-
tion and evaluation of educational games and simulations,

7 www.ines.org.es/telma
8 www.ines.org.es/gametel

adapted to student preferences, educational goals, profile,
[Burgos et al., 2007].

The games and simulations are conversational adven-
tures which are both usable and understandable. These
characteristics benefits to the content creator, the profes-
sor in most cases, as long as to the final user, usually the
student [Moreno-Ger et al., 2008; Torrente et al., 2008].

The software system is composed of several intercon-
nected modules which allow the integration and inter-
communication between games and simulations and sev-
eral tools widely used for communities of professors. In-
itially these tools are the learning management systems
Moodle and .LRN, and the authoring and learning units
execution system LAMS [Burgos et al., 2006; Moreno-
Ger et al., 2006]. In this context the Meta-Mender Rec-
ommendation System will suggest to users the best learn-
ing path according with their preferences, goals and objec-
tives and will help with the game adaptation problem. As
an example, the following meta-rule allows the generation
of rules for the forums that the user has access to, see Fig-
ure 4.

rule ForumRecommendationRule

salience -1

when

 TelmaUser($userId : userId, $userName :

 userName, $mainInterest:

 mainInterest)

 TelmaForum($forumId : forumId,

 $mainTopic : mainTopic)

 TelmaForumAccessPerStudent(forumId ==

 $forumId, userId == $userId)

then

 WriteForumRecommendationRules(filePath,

 $userId, $userName, $forumId,

 $mainTopic);

end

Figure 4. A Meta-rule from Telma Application

This kind of rules allows for adaptation in case of the

addition of a new forum to the application, a fact that can
happen at any moment.

modify(amount->"0.5";

 comment->"Adjusting originality

 rating (by 0.5) for high ratings

 of other albums by this artist.";

 variable->originality;

 product->?item)

 :-

 rating(itemID->?item2;

 originality->"9.0"!?REST0),

 product(itemID->?item2;

 artist->?artist!?REST1),

 product(itemID->?item;

 artist->?artist!?REST2).

Figure 5. A Modify Rule from the RACOFI System

5 Expressive Power of Meta-rules

In this section we provide an example of the expressive-
ness power of meta-rules. We expose how a large set of
rules can be generated from some few meta-rules.

tax(amount->"%15";

 comment->"15 percent HST")

 :-

 location(nb).

Figure 6. A Tax Rule from the RACOFI System

To this extend, we lean on the set of rules published on

[Anderson et al., 2003]. This rule-set contains 20 rules
that modify user ratings based on item similarity. An ex-
ample of these modify rules can be seen on Figure 5.

Other set of rules are the tax rules, there are 20 tax rules
in the referenced paper. See Figure 6 for an example of
these rules.

Finally the last set of rules is the so-called: NotOf-
fered rules. A sample of these rules can be seen on Fig-
ure 7. There are 12 such rules in the rule-set.

NotOffered(itemID->?itemID)

 :-

 userLevel(beginner),

 product(itemID->?itemID;

 impression->?IMP!?REST),

 $lt(?IMP,7,true).

Figure 7. A NotOffered Rule from the RACOFI Sys-

tem

So the RACOFI rule-set defines more than 50 rules.

This number is not very high but its maintainability can
consume a lot of time. Also it is very hard to confirm that
the rule-set is consistent with current data, suppose that it
is necessary to modify a tax or a rating, it would be neces-
sary to traverse the affected rules to check that everything
is correct. Also on the fly rule generation, in order to in-
crease adaptation, is a feature not easily covered with a
static rule-set.

rule modifyMetarule

 when

 RatingAmountPair($amount : amount,

 $rating : rating)

 ProductMetadata($metadata : metadata)

 then

 WriteModifyRule(filePath, $metadata,

 $amount, $rating);

end

rule taxMetarule

 salience -1

 when

 TaxData($amount : amount,

 $location : location)

 then

 WriteTaxRule(filePath,

 $amount, $location);

end

rule notOfferedMetarule

 salience -2

 when

 NotOfferedData($maximum : maximum,

 $metadata : metadata, $student

 student, $userLevel : userLevel)

 then

 WriteNotOfferedRule(filePath,

 $maximum, $metadata, $student,

 $userLevel);

end

Figure 8. A Meta-rule-set that Generates the RACOFI

Rule-set

The meta-rule approach discussed in this paper and im-

plemented in our Meta-Mender Recommendation System
is very useful to solve the problems mentioned above.
Identifying common rule´s structure it is possible to write
a concise meta-rule-set able to generate on the fly any

number of rules. This metadata, because meta-rules usual-
ly gets metadata as input, driven rule generation help solv-
ing the consistency problem, because rules can be regene-
rated at any moment after a change in the metadata.

Adaptation is also enhanced because different rules can
be generated depending on user goals, needs and interests.
As a side effect the development time of a rule-set is dras-
tically reduced as long as a large number of rules can be
generated with only one meta-rule.

As an example a set of meta-rules able to generate the
whole rule-set of the RACOFI system is shown in Figure
8.

function void WriteModifyRule(

 String filePath, String metadata,

 String amount, String rating)

{

 FileWriter output = new

 FileWriter(filePath, true);

 MessageFormat mFormat = new

 MessageFormat("");

 output.write(mFormat.format(

 "modify(amount-> \"{0}\";\n",

 new Object[]{amount}));

 output.write(

 mFormat.format(

 " variable->{0};\n",

 new Object[]{metadata}));

 output.write(" product->?item)\n");

 output.write(" :-\n");

 output.write(mFormat.format(

 " rating(itemID->?item2;" +

 "{0}- >\"{1}\"!?REST0),\n",

 new Object[]{metadata, rating}));

 output.write(" product(" +

 "itemID->?item2;artist-" +

 ">?artist!?REST1),\n");

 output.write(" product(" +

 "itemID->?item;artist-" +

 ">?artist!?REST2).\n");

 output.close();

}

Figure 9. The WriteModifyRule Function

In Figure 9 it can be seen a function that generates the

modify rule-set of the RACOFI System. The rest of the
functions referenced in Figure 8 are similar to this one.

6 Conclusions and Future Work

In this paper, we present a meta-rule based approach for
rule generation. Meta-rules are rules that generate rules,
and are able to generalize a rule-set providing bases for
adaptation, reengineering and on the fly generation. In this
paper, the benefits of meta-rules have been exposed. As
an implementation example some details of Meta-Mender
a meta-rule based Recommendation System have been
also presented. The Meta-Mender Recommendation Sys-
tem is a component of, at present, two educational appli-
cations in development and test. The concept the Meta-
Mender is based on, meta-rules for adaptation starts a new
branch in the recommendation field and broadens the
scope for new solutions in the field.

Meta-rules are an effective solution to provide a perso-
nalized recommendation to the learner, and constitute a
new approach in rule-based Recommendation Systems.

Meta-rules constitute a new abstraction level, which
provides foundations for effective adaptive and persona-
lized processes, such as in, e.g. learning. This abstraction
level is also highly valuable for adaptation. Rules can be

different for different users or for the same user at differ-
ent periods of time. Meta-Mender is a recommendation
system that implements this approach.

At present, we use Meta-Mender in two R&D projects.
In both, the next step is an evaluation phase with real data
from actual users (in fact, two different, separate target
groups). These two evaluation processes will provide a
first-hand feedback of the implementation of Meta-
Mender. Out of these results, we will refine the engine
and we will design a visual authoring tool for meta-rules.

Acknowledgments

The research presented in this paper has been partially
supported by the following projects of the Plan Avanza, a
Spanish, nationally funded R&D programme: FLEXO
(www.ines.org.es/flexo, TSI-020301-2009-9), GAMETEL
(www.ines.org.es/gametel, TSI-020110-2009-170),
TELMA (www.ines.org.es/telma, TSI-020110-2009-85).

References

[Abel et al., 2008] F. Abel, I.I. Bittencourt, N. Henze, D.
Krause and J. Vassileva. A Rule-Based Recommender
System for Online Discussion Forums. Proceedings of
the 5th International Conference on Adaptive Hyper-
media and Adaptive Web-Based Systems, Hannover,
Germany, 2008.

[Anderson et al., 2003] Michelle Anderson, Marcel Ball,

Harold Boley, Stephen Greene, Nancy Howse, Daniel

Lemire and Sean McGrath. RACOFI: A Rule-Applying

Collaborative Filtering System. Proceedings of the

IEEE/WIC COLA'03, Halifax, Canada, October, 2003.

[Burgos et al., 2006] D. Burgos, C. Tattersall and R. Ko-

per. Re-purposing existing generic games and simula-

tions for e-learning. Special issue on Education and

pedagogy with Learning objects and Learning designs.

Computers in Human Behavior, 2006.

[Burgos et al., 2007] D. Burgos, C. Tattersall and R. Ko-

per. How to represent adaptation in eLearning with

IMS Learning Design. Interactive Learning Environ-

ments, 15(2), 161-170, 2007.

[DROOLS] DROOLS. The Business Logic Integration

Platform, http://www.jboss.org/drools.

[El Helou et al., 2009] S. El Helou, C. Salzmann, S. Sire

and D. Gillet. The 3A contextual ranking system: si-

multaneously recommending actors, assets, and group

activities. In Proceedings of the Third ACM Conference

on Recommender Systems RecSys '09 ACM, New York,

New York, USA, 373-376, 2009.

[Forgy, 1982] C. Forgy. Rete: A Fast Algorithm for the

Many Pattern/Many Object Pattern Match Problem, Ar-

tificial Intelligence, 19, 17–37, 1982.

[Herlocker, 1999] J. L. Herlocker. Position Statement -

Explanations in Recommender Systems. In Proceed-

ings of the CHI' 99 Workshop, Pittsburgh, USA, 1999.

[McCarthy et al., 1985] J. McCarthy, P. W. Abrahams, D.

J. Edwards, T. P. Hart, and M. I. Levin. LISP 1.5

Programmer's Manual, MIT Press, 1985.

[Moreno-Ger et al., 2006] P. Moreno-Ger, I. Martínez-

Ortiz, J. Sierra and B. Fernández-Manjón. A Descrip-

tive Markup Approach to Facilitate the Production of e

Learning Contents. In Proceedings of 6th International

Conference on Advanced Learning Technologies

(ICALT 2006), 19-21, Kerkrade, The Netherlands,

(IEEE Computer Society), 2006.

[Moreno-Ger et al., 2008] P. Moreno-Ger, D. Burgos, I.

Martínez-Ortiz, J. Sierra and B. Fernández-Manjón.

Educational Game Design for Online Education. Com-

puters in Human Behavior 24(6), 2530–2540, 2008.

[Rocchio, 1971] J.J. Rocchio. Relevance feedback in in-
formation retrieval, in the SMART Retrieval System.
Experiments in Automatic Document Processing,
Englewood Cliffs, NJ. Prentice Hall, Inc., 313-323,
1971.

[Torrente et al., 2008] J. Torrente, P. Moreno-Ger, and B.

Fernández-Manjón. Learning Models for the Integra-

tion of Adaptive Educational Games in Virtual Learn-

ing Environments. In Proceedings of the 3rd Interna-

tional Conference on E-learning and Games, Nanjing,

China. Lecture Notes in Computer Science 5093, 463–

474, 2008.

