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Abstract. Community mining is a prominent approach for identifying (user)
communities in social and ubiquitous contexts. While there are a variety of meth-
ods for community mining and detection, the effective evaluation and validation
of the mined communities is usually non-trivial. Often there is no evaluation data
at hand in order to validate the discovered groups.
This paper proposes an approach for (relative) community assessment. We intro-
duce a set of so-called evidence networks which are capturing typical interactions
in social network applications. Thus, we are able to apply a rich set of implicit in-
formation for the evaluation of communities. The presented evaluation approach
is based on the idea of reconstructing existing social structures for the assess-
ment and evaluation of a given clustering. We analyze and compare the presented
approach applying user data from the real-world social bookmarking application
BibSonomy. The results indicate that the evidence networks reflect the relative
rating of the explicit ones very well.

1 Introduction

With the rise of social applications, a wealth of data is stored, and finding relevant en-
tries in the overwhelming user generated data repositories becomes more and more of a
problem. Personalizing the access to such systems is a key approach for preventing users
to get “lost in data”. Promising approaches for such personalization are user recommen-
dation or community mining techniques. Knowing a user’s peer group is, for example,
used to adjust search results according to his or her interests [17], or for showing the
latest activities or most popular resources only for a set of relevant users.

Parallel to the rise of the Social Web, mobile phones became more and more pow-
erful and are equipped with more and more sensors, giving rise to Mobile Web applica-
tions. Today, we observe the amalgamation of these two trends, leading to a Ubiquitous
Web, whose applications will support us in many aspects of the daily life at any time
and any place. Data are now available which were never accessible before. We expect
therefore that the approach presented in this paper will be extendable to ubiquitous
applications especially to sensor networks as well.



However, ultimately judging whether users are related or not is rather difficult since
any given pair of users shares some properties. Hence, it is usually non-trivial to objec-
tively assess the quality of a given community. As a consequence, Siersdorfer proposed
an evaluation paradigm which is based on the notion of reconstructing an existing social
structure [31], for example, considering friendship links in social applications. Trans-
ferring this paradigm to the evaluation of community mining techniques, we propose to
assess a given community structure using a set of existing social structures. To this end,
we introduce a set of so-called evidence networks which are capturing typical interac-
tions in social network applications. These interactions can be regarded as proxies for
social relations between users, i. e., as implicit connections. Thus, evidence networks
provide evidences of social relations, but do not require explicit interaction and linking.

Our framework allows to compare the community structure that is computed with
a given community mining algorithm with these evidence networks. It provides thus a
method for evaluating and comparing different community mining approaches. For the
assessment, we apply standard community quality functions, e. g., modularity [26] and
conductance [10].

Existing “social structures” are often sparse (compared to the large number of eval-
uation objects present in clustering and community detection approaches) and usually
not publicly available. In addition to explicit networks (e. g., by adding someone as a
“friend”), this work also analyzes relations which are implicitly acquired in a typical
“Web 2.0” application (e. g., by visiting a user’s profile page). Our hypothesis in us-
ing these networks, which we call evidence networks, is the assumption, that the set
of social interactions is drawn from a certain “social population”, thus the interactions
indicate connections in this distribution, and they manifest themselves with varying de-
gree in different networks. By considering samples of such a “social constellation”, we
aim to collect evidences for the underlying user relatedness.

Considering implicit evidence networks for evaluation encompasses several advan-
tages. In every application where users may interact, there are implicit evidence net-
works, even if no explicit user relationship is being implemented. Implicit networks
may also be captured anonymously on a client network’s proxy server. Typically im-
plicit networks are also significantly larger than explicit networks. Similar interaction
networks accrue in the context of ubiquitous applications (e. g., users which are using a
given service at the same place and time). Unfortunately no dataset containing such in-
teraction was available during the evaluation, but these interactions lead to implicit user
relationships which naturally fit into the framework of evidence networks described in
this section.

This paper proposes an approach for the evaluation of communities using implicit
information formalized in evidence networks. Our context is given by social applica-
tions such as social networking, social bookmarking, and social resource sharing sys-
tems. The proposed evaluation paradigm is based on the notion of reconstructing exist-
ing social structures: This paradigm suggests to measure the quality of a given division
of the users by assessing the corresponding community structure in an existing social
structure: We basically project the different clusters according to the division of users
on an existing network, and assess the created structures using measures for community
evaluation. The contribution of this paper is not the presentation of a new algorithm for



detecting communities. Instead, we rather focus on a better understanding of what a
good user community is and how to assess and evaluate a given community allocation:

– We propose evidence networks for community assessment and evaluation. These
evidence networks are thoroughly analyzed with respect to the contained commu-
nity structure.

– We apply standard community evaluation measures using the set of evidence net-
works. It is shown, that there is a strong common community structure across dif-
ferent evidence networks.

– The results suggest a basis for a new evaluation framework of community detection
methods in social applications.

The context of the presented analysis is given by social applications such as social net-
working, social bookmarking, and social resource sharing systems, considering our own
system BibSonomy3[5] as an example. But the presented analysis is not only relevant
for the evaluation of community mining techniques, but also concerning their usage for
building new community detection or user recommendation algorithms, among others.

The rest of the paper is structured as follows: Section 2 first describes basic notions
of the presented approach. Then, it describes this task in detail and introduces our novel
approach together with the concept of evidence networks and their characteristics. After
that, we analyze and compare in Section 4 the features of the networks using data from
the real-world BibSonomy system: We define different emerging networks of user re-
latedness, and analyze these in detail applying our proposed method. Finally, Section 5
concludes the paper with a summary and interesting directions for future work.

2 Evidence Networks for Community Evaluation

In the following, we briefly introduce basic notions, terms and measures used in this
paper. For more details, we refer to standard literature, e. g., [13]. After that, we describe
and define several explicit and implicit networks for the evaluation of communities.
Finally, we discuss related work.

2.1 Preliminaries

This section summarizes basic notions and terms with respect to graphs, explicit and
implicit relations, communities, and community measures.

A graph G = (V,E) is an ordered pair, consisting of a finite set V which consists
of the vertices or nodes, and a set E of edges, which are two element subsets of V . A
directed graph is defined accordingly: E denotes a subset of V × V . For simplicity,
we write (u, v) ∈ E in both cases for an edge belonging to E and freely use the term
network as a synonym for a graph. The degree of a node in a network measures the
number of connections it has to other nodes. The adjacency matrixAij , i = 1 . . . n, j =
1 . . . n of a set of nodes S with n = |S| contained in a graph measures the number of
connections of node i ∈ S to node j ∈ S. A path v0 →G vn of length n in a graph G is

3 http://www.bibsonomy.org/



a sequence v0, . . . , vn of nodes with n ≥ 1 and (vi, vi+1) ∈ E for i = 0, . . . , n− 1. A
shortest path between nodes u and v is a path u→G v of minimal length. The transitive
closure of a graph G = (V,E) is given by G∗ = (V,E∗) with (u, v) ∈ E∗ iff there
exists a path u →G v. A strongly connected component (scc) of G is a subset U ⊆ V ,
such that u →G∗ v exists for every u, v ∈ U . A (weakly) connected component (wcc)
is defined accordingly, ignoring the direction of edges (u, v) ∈ E.

For a set V , we define a relationR as a subsetR ⊆ V ×V . A relationR is naturally
mapped to a corresponding graph GR := (V,R). We say that a relation R among
individuals U is explicit, if (u, v) ∈ R only holds, when at least one of u, v deliberately
established a connection to the other (e. g., user u added user v as a friend in an online
social network). We call R implicit, if (u, v) ∈ R can be derived from other relations,
e. g., it holds as a side effect of the actions taken by u and v in a social application.
Explicit relations are thus given by explicit links, e. g., existing links between users.
Implicit relations can be derived or constructed by analyzing secondary data.

The concept of a community is vague and can be intuitively defined as a group C of
individuals out of a population U such that members of C are densely “related” one to
each other but sparsely “related” to individuals in U \ C. In the following, a community
allocation of a population U refers to a set of communities C = {C1, . . . , Cn} with⋃

1≤i≤n Ci ⊆ U and Ci 6= ∅ for 1 ≤ i ≤ n. Note that this also allows overlapping
communities, i. e., Ci ∩ Cj 6= ∅ may hold for some i, j ∈ {1, . . . , n}.

This concept maps to vertex sets C ⊆ V in graphs G = (V,E) where nodes in
C are densely connected but sparsely connected to nodes in V \ C. Though defined
in terms of graph theory, the community concept remains vague. For a given graph
G = (V,E) and a community C ⊆ V we set n := |V |, m := |E|, nC := |C|,
mC := |{(u, v) | u, v ∈ C}|, mC := |{(u, v) | u ∈ C, v 6∈ C}| and for a node
u ∈ V its degree is denoted by d(u). Several approaches for formalizing communities
in graphs exist and corresponding community structures were observed and analyzed in
a variety of different networks [27, 26, 21, 22].

In the context of evaluation measures for evidence networks we consider two mea-
sures: Conductance [22] and Modularity [26]. These consider the evaluation from two
different perspectives. Modularity mainly focuses on the links within communities,
while the conductance also takes the links between communities into account.

Conductance can be defined as the ratio between the number of edges within the
community and the number of edges leaving the community. Thus, the conductance
C (S) of a set of nodes S is given by C (S) = cS/(2mS + cS) where cS denotes the
size of the edge boundary, cS := |{(u, v) : u ∈ S, v /∈ S}| and mS denotes the number
of edges within S, mS := |{(u, v) ∈ E : u, v ∈ S}|. More community-like partitions
exhibit a low conductance, cf. [22]. The conductance of a set of clusters is then given
by the average of the conductance of the single clusters.

The modularity function is based on comparing the number of edges within a com-
munity with the expected such number given a null-model (i. e., a randomized model).
Thus, the modularity of a community clustering is defined to be the fraction of the edges
that fall within the given clusters minus the expected such fraction if edges were dis-
tributed at random. This can be formalized as follows: The modularity M (S) of a set



of nodes S in graph G with its assigned adjacency matrix A ∈ Nn×n is given by

M (A) =
1

2m

∑
i,j

(
Ai,j −

kikj
2m

)
δ(ci, cj) ,

where ci is the cluster to which node i belongs, m denotes the number of edges in
G and cj is the cluster to which node j belongs; ki and kj denote i and j’s degrees
respectively; δ(ci, cj) is the Kronecker delta symbol that equals 1 iff ci = cj , and 0
otherwise. For directed networks the modularity becomes

M (A) =
1

m

∑
i,j

(
Ai,j −

kout
i kin

j

m

)
δ(ci, cj) ,

where kin
i and kout

j are i and j’s in- and out- degree respectively [20].
The (Pearson) correlation coefficient r is used for measuring linear dependence

between two random variables X and Y . We apply the sample correlation coefficient

r =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ )2
.

were X̄ and Ȳ denote the sample mean of X and Y respectively [1].

2.2 Evidence Networks

Social networks and social resource sharing systems like BibSonomy usually capture
links between users explicitly, e. g., in a friend-network or a follower-network. How-
ever, besides these explicit relations, there are a number of other implicit evidences of
user relationships in typical social resource sharing systems. These are given by, e. g.,
clicklogs or page visit information. In some systems, it is also possible to copy content
from other users. Then, the logging information can be transformed into a correspond-
ing user-graph structure which we call evidence network, following [25].

In the following sections, we define typical explicit and implicit networks in the
context of social bookmarking applications. All of these are implemented in the so-
cial resource sharing system BibSonomy, but are also found in other resource sharing
and social applications. Even more implicit user interaction occurs in the context of
ubiquitous web applications. Examples are users which are using a given service at the
same place and time, or communication relationships based on proximity sensors [32],
among many others. During our evaluation period we did not have access to such sensor
data, but these interactions lead to implicit user relationships which naturally fit into the
framework of evidence networks described in this section.

Explicit Relation Networks In the context of the BibSonomy system, we distinguish
the following explicit networks: The follower-graph, the friend-graph, and the group
graph that are all established using explicit links between users. Formally, these graphs
can be defined as follows:



– The Follower-Graph G1 = (V1, E1) is a directed graph with (u, v) ∈ E1 iff user u
follows the posts of user v, i. e., user u monitors the posts and is able to keep track
of new posts of user v.

– The Friend-Graph G2 = (V2, E2) is a directed graph with (u, v) ∈ E2 iff user u
has added user v as a friend. In the BibSonomy system, the only purpose of the
friend graph so far is to restrict access to selected posts so that only users classified
as "friends" can observe them.

– The Group-Graph G3 = (V3, E3) is an undirected graph with {u, v} ∈ E3 iff user
u and v share a common group, e. g., defined by a special interest group.

Implicit Relation Networks Concerning implicit relationships, we propose the fol-
lowing networks: The click-graph, the copy graph, and the visit graph that are built by
analyzing the actions of users, i. e., clicking on links, copying resources, and visiting
pages of other users, respectively. Formally, the graphs are defined as follows:

– The Click-Graph G4 = (V4, E4) is a directed graph with (u, v) ∈ E4 iff user u has
clicked on a link on the user page of user v.

– The Copy-Graph G5 = (V5, E5) is a directed graph with (u, v) ∈ E5 iff user u has
copied a resource, i. e., an publication reference from user v.

– The Visit-Graph G6 = (V6, E6) is a directed graph with (u, v) ∈ E6 iff user u has
navigated to the user page of user v.

Each implicit graphGi, i = 4, . . . , 6 is given a weighting function ci : Ei → N that
counts the number of corresponding events (e. g., c5(u, v) counts the number of posts
which user u has copied from v).

2.3 Evaluation Paradigm

Several approaches exist for assessing the quality of a given set of communities. Consid-
ering users as points in appropriate feature spaces, objective functions based on the re-
sulting distribution of data points can be applied (e. g., overlaps of the user’s tag clouds,
[16]). Modeling inter-user relations in terms of graphs, various graph indices defined
for measuring the quality of graph clusterings can be applied (see, e. g., [15] for a sur-
vey). These indices capture the intuition of internally densely connected clusters with
sparse connections between the different clusters. Furthermore, the modularity measure
(see Section 2.1) is based on the observation, that communities within social networks
are internally more densely connected than one would expect in a corresponding null
model, i. e., in a random graph.

Accordingly, most methods for community detection try to optimize the produced
community division with respect to a given quality measure. However, care must be
taken, since different measures might exhibit certain biases, i. e., they tend to reward
communities with certain properties which might lead to respectively skewed commu-
nity structures [22]. Given the diversity of user interests, no single quality measure can
potentially reflect all reasons for two users being contained within the same or different
communities (or even both). Ultimately, a user study can quantify, how well a given
community structure coincides with the actual reception of the users.



Dealing with the related task of user recommendations, Siersdorfer [31] proposed an
evaluation paradigm, which is based on the reconstruction of existing social structures.
Applied to the community detection setting in the context of a social bookmarking sys-
tem as BibSonomy, this paradigm suggests to measure the quality of a given division
of the users by assessing the corresponding community structure in an existing social
structure. For our evaluation paradigm we therefore transform this principle to evaluat-
ing community structures using evidence networks (see Section 2.2): Our input is given
by an arbitrary community clustering of a given set of users – independent of any com-
munity detection method. This clustering is then assessed using the implicit evidence
networks. We show in the evaluation setting that this procedure is consistent with ap-
plying explicit networks that contain explicit user links but are rather sparse compared
to the evidence networks.

Concerning our application setting, BibSonomy incorporates three relations among
users, all of which potentially can serve as a basis for such an evaluation, namely the
Friend-Graph, the Follower-Graph and the Group-Graph. Before such a network can
be utilized as a reference for quality assessments, it has to be thoroughly analyzed,
since different structural properties may influence the resulting assessment, cf. [25].
But more importantly, one has to cope with the sparsity of the explicit user relations:
The Friend-Graph of BibSonomy, for example, only spans around 1000 edges among
700 users of all 5600 considered users and all possible 30 million edges. Thus, feature
spaces for users, for example, using tags or resources as describing elements potentially
capture a richer set of relations than those modeled in the graphs. In the following,
we therefore consider the much more dense implicit evidence networks as discussed
in [25], which can be typically observed in a running resource sharing system. In our
analysis, we investigate whether they are consistent with the existing explicit networks
in BibSonomy as a reference for evaluating community detection methods.

3 Related Work

Despite the absence of well-established gold-standards, the growing need for auto-
mated user community assessment is reflected in a considerable number of proposed
paradigms. Evaluation approaches of generated links between users can broadly be di-
vided in content-based and structure-based methods (relying on given links between
users). In the following, we discuss related work concerning community mining in
general, community detection methods, evaluation measures, metrics and evaluation
paradigms.

Fortunato [14] discusses various aspects connected to the concept of community
structure in graphs. Basic definitions as well as existing and new methods for commu-
nity detection are presented. This work is a good entry point for the topic of community
mining. In [19], Lancichinetti presents a thorough comparison of many different state
of the art community detection algorithms in graph. The performance of algorithms are
compared relative to a class of adequately generated artificial benchmark graphs.

Karamolegkos et al. [16] introduced metrics for assessing user relatedness and com-
munity structure by means of the normalized size of user profile overlaps. They evaluate
their metrics in a live setting, focussing on the optimization of the given metrics.



An LDA [7] based community detection method for folksonomies is presented
in [17] which is evaluated indirectly by measuring the improvement of search results
achieved by incorporating the mined community information. Using a metric which
is purely based on the structure of graphs, Newman presents algorithms for finding
communities and assessing community structure in graphs [28]. A thorough empirical
analysis of the impact of different community mining algorithms and their correspond-
ing objective function on the resulting community structures is presented in [22], which
is based on the size resolved analysis of community structure in graphs [21].

Recently Siersdorfer et al. [31] proposed an evaluation technique for recommenda-
tion tasks in folksonomies which is based on the reconstruction of existing links (e. g.,
friendship lists). The performance of a given system is assessed by applying quality
measures which are derived from established measures used in information retrieval.
Schifanella et al. [30] investigated the relationship of topological closeness (in terms of
the length of shortest paths) with respect to the semantic similarity between the users.
Crandall et al. [12] discuss similarity and social influence in online communities, pro-
viding the general idea that friends interact similarly concerning activities of users.
Their results indicate, that there are clear feedback effects between similarity between
actors and future interactions.

Another aspect of our work is the analysis of implicit link structures which can be
obtained in a running Web 2.0 system and how they relate to other existing link struc-
tures. Baeza-Yates et al. [4] propose to present query-logs as an implicit folksonomy
where queries can be seen as tags associated to documents clicked by people making
those queries. Based on this representation, the authors extracted semantic relations be-
tween queries from a query-click bipartite graph where nodes are queries and an edge
between nodes exists when at least one equal URL has been clicked after submitting the
query. Krause et al. [18] analyzed term-co-occurrence-networks in the logfiles of inter-
net search systems. They showed that the exposed structure is similar to a folksonomy.

Analyzing Web 2.0 data by applying complex network theory goes back to the anal-
ysis of (samples from) the web graph [8]. Mislove et al. [24] applied methods from so-
cial network analysis as well as complex network theory and analyzed large scale crawls
from prominent social networking sites. Some properties common to all considered so-
cial networks are worked out and contrasted to properties of the web graph. Newman
analyzed many real life networks, summing up characteristics of social networks [29].

Concerning the approaches mentioned above, this work unifies topics of commu-
nity mining, community evaluation, and social structures: We provide an approach for
relative community assessment using the link structure of different (implicit) networks
capturing user interactions. These so-called evidence networks are thoroughly analyzed
with respect to the contained community structure. It is shown, that there is a strong
common community structure across different evidence networks using standard com-
munity evaluation functions. The results suggest a basis for a new evaluation framework
of community detection methods in social applications.



4 Evaluation

In the following, we first describe the data used for the evaluation of the evidence net-
works. After that, we describe the characteristics of the applied evidence networks, and
discuss relations between the networks. After that, we present the conducted experi-
ments. We conclude with a detailed discussion of the experimental results.

4.1 Evaluation Data and Setting

Our primary resource is an anonymized dump of all public bookmark and publication
posts until January 27, 2010, from which we extracted explicit and implicit relations.
It consists of 175,521 tags, 5,579 users, 467,291 resources and 2,120,322 tag assign-
ments. The dump also contains friendship relations modeled in BibSonomy concerning
700 users. Additionally, it contains the follower relation, which is explicitly established
between user u and v, if u is interested in v’s posts and wants to stay informed about
new posts, as discussed above. Furthermore, we utilized the “click log” of BibSonomy,
consisting of entries which are generated whenever a logged-in user clicked on a link in
BibSonomy. A log entry contains the URL of the currently visited page together with
the corresponding link target, the date and the user name4. For our experiments we con-
sidered all click log entries until January 25, 2010. Starting in October 9, 2008, this
dataset consists of 1,788,867 click events. We finally considered all available apache
web server log files, ranging from October 14, 2007 to January 25, 2010. The file con-
sists of around 16 GB compressed log entries. We used all log entries available, ignoring
the different time periods, as this is a typical scenario for real-world applications.

Table 1. High level statistics for all relations where U denotes the set of all users in BibSonomy.

Copy Visit Click Follower Friend Group
|Vi| 1427 3381 1151 183 700 550

|Ei| 4144 8214 1718 171 1012 6693

|Vi|/|U | 0.25 0.58 0.20 0.03 0.12 0.10

#scc 1108 2599 963 175 515 90

largest scc 309 717 150 5 17 228

#wcc 37 11 55 37 140 89

largest wcc 1339 3359 1022 83 283 228

4.2 Characteristics of the Networks

In the following, we briefly summarize the link symmetry characteristics and degree
distribution of the extracted networks and discuss its power-law distribution. The anal-
ysis is restricted to the large (weakly) connected components of the network.

4 Note: For privacy reasons a user may deactivate this feature.



Link symmetry: Mislove et al. [24] showed for Flickr, LiveJournal and YouTube
that 60-80% of the direct friendship links between users are symmetric. Among others,
one reason for this is that refusing a friendship request is considered impolite. However,
the friendship relation of BibSonomy differs significantly. Only 43% of the friendship
links between users are reciprocal.

When more features are available exclusively along friendship links (e. g., sending
posts), the friendship graph’s structure will probably change and links will get more and
more reciprocal. But concerning the implicit networks we will see, that link asymmetry
is determined by a structure common to all our implicit networks.

Degree distribution: One of the most crucial network properties is the probability
distribution ruling the likelihood p(k), that a node v has in- or out-degree k respectively.
In most real life networks, the so called degree distribution follows a power law [11],
that is p(k) ∼ k−α where α > 1 is the exponent of the distribution. Online social
networks [24], collaborative tagging systems [9], scientific collaboration networks [2]
among others are shown to expose power law distributions.

For comparability, we calculated a best fitting power law model for each distribution
using a maximum likelihood estimator [11] and noted the corresponding Kolmogorov-
Smirnov goodness-of-fit metrics in Table 2 for reference. All in- and out-degree dis-
tributions except those from the groups graph show a power law like behavior, though
there are significant deviations.

Table 2. Power law parameters

Copy Visit Click Follower Friend Group
αin 2.48 2.9 2.86 2.48 3.47 3.5
αout 1.75 2.2 2.7 2.78 2.24 3.5

Din 0.0603 0.0227 0.023 0.0278 0.0617 0.1503
Dout 0.0571 0.0364 0.0394 0.0919 0.0939 0.1503

4.3 Relations between Networks

Another basic evaluation considered associational properties between the networks,
i. e., whether links present in one or more network are associated with links in an-
other network. For the evaluation, we considered all possible links between users (user
pairs) and assessed whether a link in a network existed, or not. Table 3 shows the asso-
ciations for the friend graph. The associations are given in the form of subgroup rules
(e. g., [3]), or association rules with the single element friend, denoting link member-
ship in the friend graph, in the rule head. The parameters given in the table denote the
support of the rule (i. e., the relative number of covered links), its confidence (or pre-
cision), the recall, and the F1-Measure, as the harmonic mean of precision and recall,
e. g., [3]. Additionally, the table includes the lift of the rule denoting the relative increase
in confidence/precision considering the default rule (with an empty precondition), i. e.,
is obtained by dividing the rule’s confidence/precision by the default precision.



The first (baseline) rule therefore shows the default associations for the friend graph,
i. e., the default confidence/precision for link membership is 5.5%. The second rule
can be read as follows: IF users are connected in the click AND copy AND visit
graphs, THEN the probability of being connected in the friend graph is 23.9% (con-
fidence/precision), with a support of 1.7%, and an F1-Measure of 11.2%.

Table 3. Associations between evidence networks and the friend graph. The table shows the
support (SUP), confidence/precision (CONF), the recall (REC), the F1-Measure (F1M), and the
Lift (LIFT) for the different associations, measured in percentages.

# RULE SUP CONF REC F1M LIFT
1 friend← 100 5.5 100 10.4 1.00
2 friend← click copy visit 1.7 23.9 7.3 11.2 4.35
3 friend← click copy 2 20.7 7.4 10.9 3.76
4 friend← copy visit 4.6 17.8 14.9 16.2 3.24
5 friend← click visit 7.7 13.5 19 15.8 2.45
6 friend← click 9.5 11.3 19.7 14.4 2.05
7 friend← visit 45.1 6.9 56.8 12.3 1.25
8 friend← copy 24.4 3.8 16.8 6.2 0.69

While the table shows significant increases of the rule confidences compared to
the baseline measured by the lift parameter, the individual confidence values are rather
low. This can be explained by the different sizes of the networks (the friend graph is
the smallest network contained in the table). Additionally, the table shows interesting
results comparing the individual networks: While the single copy network is only a
limited predictor for friend-relationships (line 8) the combination with the click and/or
visit networks significantly increases the associations quality, compared to considering
the isolated networks (ll. 2, 3, 4, 6 and 7).

4.4 Applied Clustering Method

Starting our experiments we faced a vicious circle: For assessing the quality of a com-
munity structure, we need a preferably good method for obtaining such a structure in
the beginning. However, since we do not want to examine a particular clustering algo-
rithm and prove its performance, we use a rather simple approach which is on the one
hand easy to understand, on the other hand, it can be broadly parameterized and allows
the construction of a randomized variety of initial clusterings.

First experiments were conducted using the well known k-means algorithm [23].
For that, each user u is represented by a vector (u1, . . . , uT ) ∈ RT where T is the total
number of tags and ui is the total number of times user u assigned the tag i to resources
in BibSonomy (i = 1, . . . , T ). The resulting clusters had poor quality, assigning most
users to a single cluster. Due to the sparsity of the considered high dimensional vec-
tor space representation (there are more than 170, 000 tags), the underlying search for
nearest neighbors fails (cf., e. g., [6] for a discussion).
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Fig. 1. In-degree distribution of the different evidence networks

To bypass this problem, we reduced the number of dimensions. There are a variety
of approaches for dimensionality reduction. We chose to cluster the tags for building
“topics”, consisting of associated sets of tags. A user u is thus represented as a vector
u ∈ RT ′ in the topic vector space, where T ′ � T is the number of topics.

For our experiments, we used a latent dirichlet allocation [7] method for building
topics, which efficiently build interpretable tag clusters and has been successfully ap-
plied in similar contexts to tagging systems (cf. [31]). In the following, our models
are denoted with “LDA-n-kMeans-k”, where n denotes the number of topics and k the
number of clusters. In total, we obtained 40 different basic clusterings.

4.5 Experiments and Results

Our experiments aim at examining whether the implicit evidence networks described in
Section 2.2 are admissible complements for the sparse explicit networks. This would
justify using, e. g., the Visit-Graph and thus allow to assess more than 53% of the active
users (in contrast to only 12% covered by the Friend-Graph) applying the evaluation
paradigm “reconstruction of existing social structures” described in Section 2.3.

The most fundamental property of a sound measure is the relative discrimination of
“better” and “worse” community structures, allowing algorithms to approximate opti-
mal structures stepwise by applying local heuristics. For analyzing how quality assess-
ment by applying the different evidence networks is sensitive to small disturbances, we
conducted a series of randomized experiments.

We started with community structures constructed by the basic feature clustering
described above, using 10, 50, 100, and 500 topics, and constructing clusterings rang-
ing from 10 to 1,000 clusters in total. Any clustering or community detection method
could be used here (e. g., we also conducted the same series of experiments applying a
graph clustering algorithm). We focussed on the applied method as it is easy to under-
stand and can be broadly parameterized; it allows for a simple generation of a variety



of (randomized) initial clusterings. We gradually added noise to these initial structures
and at each step assessed the resulting community structure by calculating the quality
measures described in Section 2.1 for the different evidence networks: Two different
approaches for adding noise to a given division into communities were applied. The
first approach (from now on called “Random” for short) randomly chooses a node u be-
longing to some community cu. This node is than assigned to another randomly chosen
community c′ 6= cu. Note that this kind of disturbance leads to a different distribution of
cluster sizes. The second approach (from now on called “Shuffle”) randomly swaps the
community allocation of randomly chosen nodes belonging to different communities,
which leads to community structures with the same community size distribution.

Figures 2 and 3 show the corresponding results of calculating the modularity for
each evidence network at every level of disturbance in the underlying community struc-
ture (higher modularity values indicate stronger community structure). Similarly, Fig-
ures 4 and 5 show the results of calculating the conductance. For the ease of presen-
tation, we selected from all considered clusterings a subset which represents a broad
range of assessed community qualities. We emphasize that this experiment does not
aim at selecting a “best” community structure, rather than examining the relative rating
of slightly worse structures when applying the different evidence networks (based on
the assumption, that randomly disturbing communities decreases their quality).

We see that the modularity on every evidence network is consistent with the level
of disturbance, that is, the modularity value monotonically decreases with increasing
percentage of disturbed nodes. Slight deviations (e. g., looking at the alternating gradi-
ents of the Follower-Graph) are most likely statistical effects due to the limited size of
the corresponding evidence network. These results are supported by the figures show-
ing the corresponding plots for the conductance values, since lower conductance values
indicate stronger clustering.

Note that conductance and modularity give precedence to different community struc-
tures. In particular, structures with many small communities are preferred according
to their conductance (k = 500, 800, 1000), whereas smaller numbers of clusters are
preferred according to their modularity (Figure 6 exemplary shows two corresponding
cluster size distributions). This behavior is consistent with the corresponding bias of the
applied measures as discussed in [22].

The preceding results consider the different evidence networks independently. How-
ever, we ultimately want to use the implicit networks as supplement for the sparse ex-
plicit social structures (in particular the Friend-Graph). We therefore expect the assess-
ment of community structures applying the implicit networks to be consistent with the
application of the explicit networks. This motivates the following experiment: We cal-
culated the Pearson correlation coefficient for each of the implicit networks and one of
the explicit networks. Following the paradigm of reconstructing existing social struc-
tures, the explicit networks yield sensible community scores (in terms of modularity
and conductance). The following experimental setup aims at examining whether the
corresponding community scores as induced by implicit networks are consistent (i. e.,
correlated) with the scores induced by the explicit networks. Table 4 shows the cor-
responding correlation coefficients (see Section 2.1) for modularity and conductance
scores in the Friend-Graph and each of the graphs in Figures 2-5 (averaged per measure
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(c) Group-Graph (randomized left, shuffled right).

Fig. 2. Modularity calculated on different clusterings at varying levels of disturbed cluster assign-
ments relative to explicit evidence networks

and randomization type). The averaged correlation coefficients suggest a surprisingly
high correlation between the measures calculated on the implicit networks and those
calculated on the friend graph. Especially the conductance graphs show high correla-
tion coefficients with low standard deviations. In comparison, repeating the same ex-
periment with the group graph as the most dense existing social structure shows lower
correlation coefficients with higher standard deviation, cf. Table 5.
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Fig. 3. Modularity calculated on different clusterings at varying levels of disturbed cluster assign-
ments relative to implicit evidence networks

4.6 Discussion

The experimental results presented in the previous section indicate that implicit evi-
dence networks used for assessing the quality of a community structure are surprisingly
consistent with the expected behavior as formalized by the existing explicit social struc-
tures, in particular concerning the Friend-Graph. In our experiments (considering 40
models per experiment) we observed a high correlation between the quality measures
calculated on the implicit and explicit networks supporting this hypothesis.
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Fig. 4. Conductance calculated on different clusterings at varying levels of disturbed cluster as-
signments relative to explicit evidence networks

The implicit networks show a lower correlation with the group graph. At the first
glance, this looks like a disappointing result. But the analysis of the group graph shows,
that its properties significantly differ from typical social networks as discussed in [25,
24]. Most strikingly, its degree distribution follows not a power law and its distribution
of strongly connected components differs. Therefore, we obtain a ranking of the explicit
graphs: It is thus more desirable to model the friend graph’s behavior more closely than
the group graph’s.
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Fig. 5. Conductance calculated on different clusterings at varying levels of disturbed cluster as-
signments relative to implicit evidence networks

5 Conclusions

In this paper, we have presented evidence networks for the evaluation of communities.
Since explicit graph data is often sparse and does not cover the whole instance space
well, evidence networks provide a viable alternative and complement to explicit net-
works, if available. We have discussed several possible evidence networks, and their
features. The presented evaluation paradigm is based on the idea of reconstructing ex-
isting social structures for the assessment and evaluation of a given clustering. Thus, the



 0

 50

 100

 150

 200

 250

 300

 0  10  20  30  40  50  60  70  80

nr
. o

f o
cc

ur
re

nc
es

community size

LDA-50-kMeans-1000

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  200 400 600 800 1000 1200 1400 1600 1800

nr
. o

f o
cc

ur
re

nc
es

community size

LDA-100-kMeans-25
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larity (right).

Table 4. Averaged Pearson correlation coefficient ρGi,G2 together with it’s empirical standard
deviation for each of the experiments “Shuffle” (S) and “Randomize” together with the consid-
ered objective functions modularity (M) and conductance (C) on the different implicit evidence
networks Gi and the friend graph G2.

Evidence Network R/M S/M R/C S/C
Follower-Graph 0.86± 0.17 0.90± 0.12 0.89± 0.28 0.83± 0.41
Group-Graph 0.91± 0.13 0.95± 0.08 1.00± 0.01 0.96± 0.17

Copy-Graph 0.82± 0.17 0.87± 0.12 0.99± 0.03 0.98± 0.09
Click-Graph 0.80± 0.17 0.86± 0.13 0.99± 0.04 0.98± 0.07
Visit-Graph 0.72± 0.25 0.80± 0.18 0.97± 0.06 0.98± 0.08

Table 5. Averaged Pearson correlation coefficient ρGi,G3 together with it’s empirical standard
deviation for each of the experiments “Shuffle” (S) and “Randomize” together with the consid-
ered objective functions modularity (M) and conductance (C) on the different implicit evidence
networks Gi and the group graph G3.

Evidence Network R/M S/M R/C S/C
Friend-Graph 0.91± 0.13 0.95± 0.08 1.00± 0.01 0.96± 0.17
Follower-Graph 0.72± 0.30 0.83± 0.20 0.89± 0.27 0.82± 0.40

Copy-Graph 0.67± 0.35 0.80± 0.23 0.98± 0.05 0.93± 0.29
Click-Graph 0.68± 0.35 0.80± 0.23 0.98± 0.04 0.94± 0.29
Visit-Graph 0.60± 0.42 0.73± 0.28 0.96± 0.07 0.93± 0.27

contribution of this paper considers a new kind of data for assessing user communities in
social applications is introduced and formalized as so-called evidence networks: These
are thoroughly analyzed with respect to the contained community structure (cf. Section
4). It is shown that there is a strong common community structure across different net-
works. Our conducted experiments furthermore suggest that the different networks are
not contradictory but complementary.

The context of the presented analysis is given by social applications such as social
networking, social bookmarking, and social resource sharing systems, considering our



own system BibSonomy5[5] as an example. The evaluation of the presented approach
using real-world data from the social resource sharing tool BibSonomy indicated the
soundness of the approach considering the consistency of community structures and
the applied measures. But the presented analysis is not only relevant for the evaluation
of community mining techniques, but also for implementing new community detection
or user recommendation algorithms, among others.

For future work, we aim to investigate, how the different evidence networks can
be suitably combined into a single network. For this, we need to further analyze the
individual structure of the networks, and the possible interactions. Another interesting
options for further research is the improvement of the clustering algorithms on the user
– tag data. An improved preprocessing of the tagging data seems a promising direction
for further improving the general approach. Furthermore, we plan to extend our experi-
ments for a larger count of networks and clusterings in order to generalize the obtained
results to a broader bases.

We also plan to compare the proposed ratings of community allocations with results
of different user studies, partly integrated in a live setting in the running system Bib-
Sonomy. As another direction of research, we are considering to incorporate evidence
networks in the community detection process (e. g., in terms of constraints).
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