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Abstract. This paper presents an approach for explorative pattern min-
ing in social media for describing image media based on tagging infor-
mation and collaborative geo-reference annotations. We utilize pattern
mining techniques for obtaining sets of tags that are specific for the
specified point, landmark, or region of interest. Next, we show how these
candidate patterns can be presented and visualized for interactive explo-
ration using a combination of general pattern mining visualizations and
views specialized on geo-referenced tagging data. We present a case study
using publicly available data from the Flickr photo sharing platform.

1 Introduction

Given a specific location, it is often interesting to obtain representative and
interesting descriptions for it, e.g., for planning touristic activities. In this paper,
we present an approach for modeling location-based profiles of social image media
by obtaining a set of relevant image descriptions (and their associated images)
for a specific point of interest, landmark, or region, described by geo-coordinates
provided by the user. We consider publicly available image data, e.g., from photo
management and image sharing applications such as Flickr3 or Picasa4.

In our setting, each image is tagged by users with several freely chosen tags.
Additionally, each picture is annotated with a geo-reference, that is the latitude
and the longitude on earth surface where the image was taken. Based on this
information, we try to explore the collaborative tagging behavior in order to
identify interesting and representative tags for a specific location of interest.
This can be either a point or a region, so that the method can be applied
both for macroscopic (regional) and microscopic (local) analysis. Furthermore,
by appropriate tuning and a fuzzified focus, also mesoscopic analyses combining
both microscopic and macroscopic views can be implemented.

3 http://www.flickr.com
4 http://www.picasa.com



Since the problem of identifying interesting and representative descriptions of
a location is to a certain degree subjective, one cannot expect to identify the best
patterns in a completely automatic approach. On the other hand, considering
datasets with thousands of tags, manual browsing is usually not an option.

Therefore, we propose a two step approach for tackling this problem: The
first step uses pattern mining techniques, e.g., [1,2] to automatically generate a
candidate set of potentially interesting descriptive tags. For this task, we present
three different options for constructing target concepts. In the second step, a hu-
man explores this candidate set of patterns and introspects interesting patterns
manually. In a user-guided environment, explorative pattern mining can then be
applied iteratively adapting the process steps according to the analysis goals.
Additionally, background knowledge regarding the set of tags can be easily in-
corporated in a semi-automatic process, such that new attributes are generated
from tag hierarchies that can be manually refined and included in the process.
To further improve the results, we propose a simple but effective method for
incorporating a weighting schema to avoid a bias towards very active users.

The presented approach is thus implemented in a semi-automatic way. In
such contexts, typically advanced methods for the visualization and browsing
of the respective tags sets are required according to the Information Seeking
Mantra by Shneiderman [3]: Overview, Zoom and Filter, Details on Demand. We
propose a set of techniques for exploring the statistics and spatial distribution of
the candidate tags. These include visualizations adapted from statistics, from the
area of pattern mining, and also domain specific views developed for spatial data.
The presented approach is embedded into the comprehensive pattern mining
and subgroup discovery environment VIKAMINE [4], which was extended with
specialized plug-ins for handling and visualizing geo-spatial information.

From a scientific point of view, the tackled problem is interesting as it requires
the combination of several distinct areas of research: Pattern mining, mining
social media, mining (geo-)spatial data, visualization, knowledge acquisition and
interactive data mining. Our contribution can be summarized as follows:

1. We adapt and extend pattern mining techniques to the mining of combined
geo-information and tagging information.

2. To avoid bias towards users with very many resources, we propose a user
weighting schema.

3. We show how background knowledge about similar tags can be included to
define or refine topics consisting of multiple tags.

4. For the explorative mining approach we provide a set of visualizations.
5. The presented approach is demonstrated in a case study using publicly avail-

able data from Flickr with respect to two well-known locations in Germany.

The rest of the paper is structured as follows: Section 2 describes the can-
didate generation through pattern mining. After that, Section 3 introduces the
interactive attribute construction and visualization techniques. Next, Section 4
features two real-world case studies using publicly available data from Flickr.
Section 5 discusses related work. Finally, Section 6 concludes the paper with a
summary and interesting directions for future research.



2 Location-based Profile Generation and Interactive
Exploration of Social Image Media

The problem of generating representative tags for a given set of images is an ac-
tive research topic, see [5]. In contrast to previously proposed techniques, cf. [6],
our approach does not require a separate clustering step. Furthermore, we also
include interactive exploration into our overall discovery process: The approach
starts by obtaining a candidate set of patterns from an automated pattern mining
task. However, since it is difficult to extract exactly the most interesting patterns
automatically, we propose an interactive and iterative approach: Candidate sets
are presented to the user, who can refine the obtained patterns, visualize the
patterns and their dependencies, add further knowledge, or adapt parameters
for a refined search iteratively.

2.1 Background on Pattern Mining

Since the number of used tags in a large dataset usually is huge, it is rather useful
to provide the user with a targeted set of interesting candidates for interactive
exploration. For this task, we utilize the data mining method of pattern mining,
specifically subgroup discovery [1, 2, 7, 8]. This allows us to identify not only
interesting single tags efficiently, but also combinations of tags, which are used
unusually more frequently together in a given area of interest.

Subgroup discovery aims at identifying interesting patterns with respect to a
given target property of interest according to a specific interestingness measure.
In our context, the target property is constructed using a user-provided location,
i.e., a specific point of interest, landmark, or region, identified by geo-coordinates.

Pattern mining is thus applied for identifying relations between the (de-
pendent) target concept and a set of explaining (independent) variables. In the
proposed approach, these variables are given by (sets of) tags that are as specific
as possible for the target location. The top patterns are then ranked according
to the given interestingness measure.

Formally, a database D = (I, A) is given by a set of individuals I (pictures)
and a set of attributes A (i.e., tags). A selector or basic pattern sela=aj is a
boolean function I → {0, 1} that is true, iff the value of attribute a is aj for this
individual. A (complex) pattern or subgroup description sd = {sel1, . . . , seld} is
then given by a set of basic patterns, which is interpreted as a conjunction, i.e.,
sd(I) = sel1 ∧ . . . ∧ seld. We call a pattern sds a generalization of its special-
ization sdg, iff sdg ⊂ sds. A subgroup (extension) sg is then given by the set
of individuals sg = ext(sd) := {i ∈ I|sd(i) = true} which are covered by the
subgroup description sd.

A subgroup discovery task can now be specified by a 5-tuple (D,T, S,Q, k).
The target concept T : I → R specifies the property of interest. It is a function,
that maps each instance in the dataset to a target value t. It can be binary (e.g.,
the instance/picture belongs to a neighborhood or not), but can use arbitrary
target values (e.g, the distance of an instance to a certain point in space). The



search space 2S is defined by a set of basic patterns S. Given the dataset D
and target concept t, the quality function Q : 2S → R maps every pattern in
the search space to a real number that reflects the interestingness of a pattern.
Finally, the integer k gives the number of returned patterns of this task. Thus,
the result of a subgroup discovery task is the set of k subgroup descriptions
res1, . . . , resk with the highest interestingness according to the quality function.
Each of these descriptions could be reformulated as a rule resi → t.

While a huge amount of quality functions has been proposed in literature,
cf. [9], the most popular interesting measures trade-off the size |ext(sd)| of a
subgroup and the deviation t − t0, where t is the average value of the target
concept in the subgroup and t0 the average value of the target in the general
population. Please note, that for binary t the average value of t reflects the
likelihood of t in the respective set. Thus, the most used quality functions are of
the form

qa(sd) = |ext(sd)|a · (t− t0), a ∈ [0; 1]

For binary target concepts, this includes for example the weighted relative accu-
racy for the size parameter a = 1 or a simplified binomial function, for a = 0.5.

2.2 Target Concept Construction

The most critical issue for formulating the location-based tag mining problem as
a pattern mining task is how to construct a proper target concept. In this paper
we propose and discuss the effects of three different approaches: Using the raw
distance, a parametrized neighborhood function, and a ”fuzzified” neighborhood
function.

First, we could use the raw distance of an image to the point of interest as
a numeric target property. Given latitudes and longitudes the distance on the
earth surface of any point p = (latp, longp) to the specified point of interest
c = (latc, longc) can be computed by:

d(p) = re · arccos(sin(latp) · sin(latc) + cos(latp) · cos(latc) · cos(longc − longp)),

where re is the earth radius.
Using this as the numeric target concept, the task is to identify patterns, for

which the average distance to the point of interest is very small. For example,
the target concept for an interesting pattern could be described as: ”Pictures
with this tag are on average 25km from the specified point of interest, but the
average distance for all pictures to the point of interest is 455 km”.

The advantages of using the numeric target concept is that it is parameter-
free and can be easily interpreted by humans. However, it is unable to find
tags, which are specific to more than one location. For example, while for the
location of the Berlin olympic stadium the tag ”olympic” could be a regarded
as specific. However, if considering other olympic stadiums (e.g., in Munich) the
average distance for the tag ”olympic” is quite large. Therefore, we define a
second function: The neighborhood distance requires a maximum distance dmax

to the location of interest. Then, the target concept is given by:



neighbor(p) =

{
0, if d(p) < distmax

1, else

Tags are then considered as interesting, if they occur relatively more often in
the neighborhood than in the total population. For example, the target concept
for an interesting pattern in this case could be described as: ”While only 1% of
all pictures are in the neighborhood of the specified point of interest, 33% for
pictures with tag x are in this neighborhood.” The downside of this approach
is however, that it is strongly dependent on the chosen parameter dmax. If this
parameter is too large, then the pattern mining step will not return tags specific
for the point of interest, but for the surrounding region. On the other hand, if
dmax is too small, then the number of instances in the respective area is very
low and thus can easily influenced by noise.

Therefore, the third considered approach is to ”fuzzify” the second approach:
Instead of a single distance dmax we define a minimum distance dlmax and a
maximum distance dumax for our neighborhood. Images with a distance smaller
than dlmax are counted fully to the neighborhood but only partially for distances
between dlmax and dumax. For the transition region between dlmax and dumax

any strictly monotone function could be used. In this paper, we concentrate on
the most simple variant, that is, a linear function. Alternatives could be sigmoid-
functions like the generalized logistic curve.

fuzzy(p) =


0, if d(p) < dlmax

d(p)−dlmax

dumax−dlmax
, if d(p) > dlmax and

d(p) < dumax

1, otherwise

In doing so, we require one more parameter to chose, however, using such
soft boundaries the results are less sensible to slight variations of the chosen
parameters. Thus, we achieve a smooth transition between instances within or
outside the chosen neighborhood.

Figure 1 depicts the described options: The fuzzy function can be regarded
as a compromise between the other two function. It combines the steps for the
neighborhood function with a linear part that reflects the common distance
function.

2.3 Avoiding User Bias: User–Resource Weighting

In the previously described process for candidate generation all images are
treated as equally important. However, due to the common power law distri-
bution between users and resources (images) in social media systems, only a few
but very active users contribute a substantial part of the data. Since images
from a specific user tend to be concentrated on certain locations and users also
often apply a specific vocabulary, this can induce a bias towards the vocabulary
of these active users. As an extreme example, consider a single ”power user”,
who shared hundreds of pictures of a specific event at one location and tags all



Fig. 1. The three proposed distance functions d(p), neighbor(p) with a threshold of
distmax = 5 and fuzzy(p) with thresholds d− = 3 and d+ = 7 as a function over d(p).
It can be observed, that d(p) is (obviously) linear, neighbor(p) is a step function, and
fuzzy(p) combines both properties in different sections.

photos of this event with a unique name. Given the approach presented above
this name is then considered as very important for that location, although the
tag is not commonly used by the user base.

One possibility to solve this issue could be to utilize an interestingness mea-
sure that also incorporates the user count. That is, one could extend the standard
quality function given above by adding a term, that reflects the number of differ-
ent users that own a picture in the evaluated subgroup. Such an extended quality
function could be defined as qa(sd) = |ext(sd)|a · (t− t0) · |u(sd)|, where |u(sd)|
is the user count for images in the respective subgroup. Unfortunately, such in-
terestingness measures are not supported by efficient exhaustive algorithms for
subgroup discovery, e.g., SD-Map [10] or BSD [11]. On the other hand, more
basic algorithms, for example exhaustive depth-first search without a special-
ized data structure scale not very well for the problem setting of this paper,
with thousands of tags as descriptions and possibly millions of instances in an
interactive setting.

Therefore, we propose to apply a slightly different approach to reduce user
bias in our application. We assume that a single picture might be overall less
important, if a user shared a large amount of images. This is implemented by
applying an instance weight for each resource, that is, for each image in our
application. Thus, when computing statistics of a subgroup the overall count and
the target value, which is added if the respective image is part of a subgroup,
is multiplied by the corresponding weight w(i). The weight is smaller, if more
pictures are contributed by the owner of the image. For our experiments we
utilized a weighting function of

w(i) =
1√

(|{j|j is contributed by the user that contributed i}|)
.

Instance weighting is supported by SD-Map as well as many other important
subgroup discovery algorithms, since it is also applied in pattern set mining
approaches such as weighted covering [7].



3 Interactive Exploration

In the following, we first describe the options for including background knowledge
for semi-automatic attribute construction. After that, we describe the different
visualization options.

3.1 Semi-Automatic Attribute Construction

In social environments similar semantics are often expressed using diverse sets of
tags, e.g., due to different languages. For an improved analysis it can be helpful
to combine multiple tags into topics (meta-tags), that is, sets of semantically
related attributes. The attribute hierarchy editor shown in Figure 2 allows an
easy but fine-grained specification of topics by editing a text document using
dash-trees [12] as a simple intuitive syntax: A tree structure can easily be defined
by adding ”-” characters at the start of the respective lines, see Figure 2. The
root of the tree defines the topic name, the tree children declares included tags
for this topic. For each topic a new attribute is constructed in the system, that
is set to true for a single instance, iff at least one of the attributes identified
by a child node is true in this instance. The hierarchies are directly specified in
VIKAMINE and propagated to the applied dataset.

In addition to providing the knowledge purely manually, we can also apply
a semi-automatic approach. This is implemented, e.g., using LDA-based ap-
proaches (latent dirichlet allocation [13]). LDA provides for a convenient data
preprocessing option. Following the semi-automatic approach, we apply it for
generating topic proposals, which then are tuned interactively. The LDA method
itself builds topics capturing semantically similar tags and thus helps to inhibit
the problem of synonyms, semantic hierarchies, etc. After that, the set of pro-
posed topics can then be tuned and refined by the user. In this way, we efficiently
build interpretable tag clusters, i.e., for obtaining descriptive topic sets.

3.2 Visualization

In our approach, the problem of identifying tags specific for a region is formu-
lated as a pattern mining task. While this task can generate candidate patterns,
often only manual inspection by human experts can reveal the most informative
patterns. This is especially the case, when considering that the interestingness
is often subjective and dependent on prior knowledge.

As a simple example, if you knowingly choose a point of interest in the city
of Berlin, the information, that the tag ”berlin” is often used there, will not add
much knowledge. However, if a point is chosen arbitrarily on the map without
any information about the location, then the information that this tag is used
frequently in that area is supposedly rather interesting. Therefore, we consider
possibilities to interactively explore, analyze and visualize the candidate tags and
tag combinations as essential for effective knowledge discovery in our setting. We
consider three kinds of visualizations:



Fig. 2. Editor for specifying background knowledge (tag hierarchies) in textual form.
The tag hierarchies can be generated, e.g., by LDA-based approaches, and can be re-
fined in a semi-automatic step. In this example for instance the new attribute cemetery*
is constructed that is true, iff the respective image has been tagged by any of the tags
beyond (cemetery, friedhof, grave, cemeteries, cementerios, cimiteri, graves, friedhöfe,
gräber).

1. Traditional visualizations are mainly used for introspection of candidate pat-
terns. Typical visualizations include the contingency table, pie charts, and
box plots. An especially important visualization of this category proved to
be a distance histogram. This histogram shows on the x-axis the distances
d(p) from the location of interest and on the y-axis the number of images
with the specified tag(s) at that distance.

2. For an interactive exploration of the mined profiles and the tag sets and
comparative visualization we can utilize various established visualizations
for interactive subgroup mining, cf. [4]. These user interfaces include for
example:

(a) The Zoomtable which is used to browse over on the refinements of the
currently selected pattern. For numeric targets, it includes the distri-
bution of tags concerning the currently active pattern. For the binary
’neighbor’ target concept, it shows more details within the zoom bars,
cf. [4], e.g., showing the most interesting factors (tags) for the current
pattern and target concept.

(b) The nt-Plot compares the size and target concept characteristics of many
different pattern. In this ROC-space related plot, e.g., [4], each pattern
is represented by a single point in two dimensional space. The position



on the x-axis denotes the size of the subgroup, that is, the number of pic-
tures covered by the respective tags. The position on the y-axis describes
the value of the target concept for the respective pattern.

Thus, a pattern with a high frequency that is not specific for the target
location is displayed on the lower right corner of the plot, while a very
specific tag, which was not frequently used is displayed on the upper left
corner.

(c) The Specialization Graph is used to observe the dependencies between
tag combinations, cf. [14]. In this graph, each pattern is visualized by
a node in the graph. Each node is represented by a two-part bar. The
total length of these bars represents the number of cases covered by this
pattern, while the ratio between the two parts of the bar represent the
value/share of the target concept within the extension of the pattern.
Generalization relations between patterns are depicted by directed edges
from more general to more specific patterns. For example, the patterns
arts and arts ∧ night are connected by an edge pointing at the latter
patterns.

For a more specific exploration of the location-based profiles of social image
media advanced visualization methods can furthermore be exploited:

(a) The Distance Attribute Map is a view, that allows for the interactive cre-
ation of distance attributes (d(p), neighbor(p) and fuzzy(p)) by selecting
a point p on a dragable and zoomable map. Future improvements could
incorporate online search function, e.g., by using the Google Places API.

(b) The Tag Map visualizes the spatial distribution of tags on a dragable
and zoomable map. Each picture for a specific pattern is represented by a
marker on the map. Since for one pattern easily several thousand pictures
could apply, we recommend to limit the number of displayed markers. In
our case study (see Section 4) we chose a sample of at most 1000 markers.
In a variant of this visualization also the distribution of sets of tags can
be displayed on a single map in order to compare their distributions.
An exemplary zoomed-in Tag-Map for the tags brandenburgertor and
holocaust (for the memorial) is shown in Figure 3. Figure 4 shows the
distance distribution of the tag to the actual location.

(c) The Exemplification View displays sample images for the currently dis-
played tag. This is especially important, since pattern exemplification
has shown to be essential for many applications, e.g., [15]. Using this
view, the overall application can be used to not only browse and explore
the used tags with respect to their geo-spatial distribution, but also al-
lows for interactive browsing of the images itself. Since there are possibly
too many pictures described a set of tags to be displayed at once, we
propose to select the shown images also with respect to their popularity,
i.e., the number of views of the images, if this information is available.

The interactive exploration also can utilize background knowledge concerning
the provided tags, which is entered either in a textual or graphical form.



Fig. 3. Example comparative Tag-Map visualization from the case study (zoomed in):
Pictures with tag ”holocaust” are marked with an red ”A”, while pictures for the tag
”brandenburgertor” are marked with a green ”B”

The proposed features were implemented as a plugin for the interactive sub-
group discovery environment VIKAMINE5. For incorporating the traditional
plots the VIKAMINE R-Plugin was used as a bridge to the R6 language for
statistical computing.

4 Case Study: Flickr

We show the effectiveness of our approach in two case studies. These application
scenarios utilize 1.1 million images collected from Flickr. We selected those that
were taken in 2010 and are geotagged with a location in Germany.

For the collected tagging data, we applied data cleaning and preprocessing
methods, e.g., stemming. We considered all tags that were used at least 100
times. This resulted in about 11,000 tags. In the case studies we show how the
combination of automated pattern mining, visualization and specialized views
for geo-referenced tagging data enables the identification of tag combinations
which are interesting for the specified location. For pattern mining, we applied
the proposed quality function with a = 0.5 .

For our case studies, we present results for two example locations: The fa-
mous Brandenburger Tor in Berlin and the Hamburg harbor area. The goal was
to enable the identification of tags, which are representative especially for this
region, for people without knowledge of the respective location.

4.1 Example 1: Berlin, Brandenburger Tor

In our first example we consider the city centre of Berlin, more precisely, the
location of the Brandenburger Tor. The expected tags were, for example, bran-
denburgertor, reichstag, holocaustmemorial (since this memorial is nearby). Of

5 www.vikamine.org
6 http:/www.r-project.org



course, also the tag berlin is to be expected. As an example, Figure 4 shows the
distance distribution of the tag brandenburgertor to the actual location.

Fig. 4. Histogram showing the distances of pictures with the tag ”brandenburgertor”
to the actual location. It can be seen in the left histogram that the tag is very specific,
since the vast majority of pictures with this tag is within a 5km range of the location.
The histogram on the right side shows the distance distribution up to 1km in detail. It
can be observed that most pictures are taken at a distance of about 200m to the sight.

Target Concept Options First we investigated, which candidate tags were
returned by an automatic search using the different proposed target concept
options. The results are shown in the Tables 1-5.

Table 1. Brandenburger Tor: top patterns (max. description size 1) for the common
mean distance target function.

Tag Subgroup Size Mean Target
Distance (km)

berlin 113977 10.48
potsdam 5533 26.83
brandenburg 5911 47.33
charlottenburg 4738 10.90
art 24067 211.28
leipzig 10794 147.87
kreuzberg 3935 14.11
nachbarn 3691 6.16
leute 4547 53.37
strassen 6899 126.83
berlinmitte 3054 4.76



Table 1 shows, that the results include several tags, which are not very specific
for the location of interest, but for another nearby location, for example the tags
Potsdam or Leipzig for cities close to Berlin. This can be explained by the fact,
that these tags are quite popular and the average distance for pictures with this
tag is relatively low in comparison to the total population even if pictures do
not correspond to the location of interest itself, but for a nearby location. Since
the use of the distance function d(p) does not allow for parametrization, it is
difficult to adapt the search, such that those tags are excluded.

Tables 2-4 show the neighbor function with different distance thresholds
dmax, from 0.1 km to 5 km. The results for this target concept are strongly
dependent on this threshold. For a very small value of dmax = 0.1 km the
results seem to be strongly influenced by some kind of noise, since the number
of pictures in that neighborhood is relatively small. For example it includes the
tags metro, gleis (translated: ”rail track”) or verkehrsmittel (translated ”means
of transport”). While these tags should occur more often in urban areas, they are
by no means the most representative tags for the area around the Brandenburger
Tor. In contrast, the parameter dmax = 1 km yields results that do meet our
expectations. The resulting tags reflects the most important sites in that area
according to travel guides, including reichstag, brandenburgertor, potsdamerplatz
and sonycenter. We consider these tags as the most interesting and representative
for this given location. However, we do not assume that this parameter will lead
to the best result in all circumstances. For example, in more rural areas, where
more landscape pictures with a larger distances to depicted objects are taken,
we expect that a larger value of dmax might be needed. As shown in Table 4, for
a parameter of dmax = 5 km the results show to be tags, which are specific for
Berlin as a whole, but not necessarily for the area around the Brandenburger
Tor. The results include tags like tiergarten, kreuzberg or alexanderplatz which
describe other areas in Berlin.

Finally, Table 5 shows the fuzzified distance function, ranging from 1km to
5km as lower and upper thresholds. The results indicate, that this function is
less sensitive to the parameter choices. Therefore, selecting the parameter is less
difficult since, e.g., distances like 1-5km as in the presented example can be
applied for a microscopic to a mesoscopic perspective. The collected results form
a nice compromise between the results of the neighbor functions.

Including Instance Weighting Taking a closer look at the results of Table 4
most of the resulting tags provide a good description of the larger area of Berlin.
However, there are a few exceptions: karnevalderkulturen describes a seasonal
well known, but not indicative event in Berlin. heinrichböllstiftung is a political
foundation, for which the headquarters are located in Berlin. While both tags are
certainly associated with Berlin, one would not expect them to be as important
or typical for Berlin as other descriptions. The occurrence of these tags can be ex-
plained by a few ”power users” that extensively used these tags for many images.
To show this effect, we added an additional column for to Table 4, which notes
the overall count of users that used that description. For example the tag hein-



richböllstiftung was applied for 1211 images, but only by three different users. To
avoid such results in the candidate generation, we apply an instance (resource)
weighting as described in Section 2.3. The results are presented in Table 6. The
table shows, for example that the tags heinrichböllstiftung and karnevalderkul-
turen have disappeared and are replaced by more broadly used descriptions of
Berlin attractions such as fernsehturm (translated: television tower) or memo-
rial (for the previously mentioned holocaust memorial). Thus, we consider the
attribute weighting as appropriate to reduce bias towards the vocabulary of only
a few but very active users, as shown in the example.

Attribute Construction As can been seen from this example (Table 4), the
automatic candidate generation tends to return semantically equivalent or very
closely related tags in the results, i.e. translations of tags into other languages,
for example berlin, berlino and berlijn. Such results fill slots in the result set of
the candidate generation, suppress further interesting and make the results more
difficult to comprehend. Additionally, one wants to perform the next step of the
analysis— the interactive exploration — for these descriptions at once. In order
to identify such equivalent tags and combine them within the system we used our
semi-automatic attribute construction technique. To do so, first a latent dirichlet
allocation is performed on the dataset to obtain a set of 100 candidate topics.
The results were manually evaluated and transformed in a dash-tree format, see
Section 3.1. The input format was then used to construct new combined tags
(topics) that are treated like regular tags. Additionally, the tags that were used
to build these meta-tags were excluded from candidate generation

The automatically constructed tags were of mixed quality: For a few top-
ics the describing tags could be almost directly used as equivalent tags. For
example, one resulting topic of the LDA was given by the tags: cemetery, fried-
hof, grave, cimetičre, cemeteries, cementerio, friedhöfe, cementerios, cemitério,
cimiteri, cimetičres, cemitérios and graves. The majority of the topics included
several tags that can be considered as equivalent, but include other tags as well,
for example: architecture, building, architektur, church, dom, cathedral, germany,
tower, gebäude, window, glass. Some of these tags can be used to construct a
new meta-tag by manual refinement, e.g. architecture, building and architektur,
however the tags germany or glass should not be used for this purpose. The
last group of topics consisted of rather loosely related tags, for example: winter,
thuringia, snow, town, tree, village, sky. These topics were considered inappro-
priate for the purpose of constructing expressive attributes.

In summary, LDA provided for a very good starting point to find equiva-
lent tags. However, applying only the automatic method was far from a quality
level that enabled us to use the results directly to construct clear meaningful
and comprehensible combined tags. The text-based format in our mining envi-
ronment proved to be easy to use and well-fit for this purpose. The automatic
method (LDA) proposed suitable sets of tags which could be manually refined.
Depending on the amount of total tags this requires a certain amount of man-
ual work. Accordingly, the decision, which tags can be considered semantically



equivalent is also subjective to a certain degree. Nonetheless, this only empha-
sizes the need of a simple interactive environment that enables also system users
without a data mining background to combine attributes as they see them fit.
This technique of attribute construction also enables the user to investigate self-
constructed topics by interactive exploration by just creating a meta tag with
certain selected keywords.

Table 2. Brandenburger Tor: top patterns (description size 1) for the target concept
function neighbor , with dmax = 0.1 km.

Tag Subgroup Size Target Share

wachsfigur 322 0.99
madametussauds 177 0.853
celebrity 345 0.435
verkehrsmittel 163 0.313
metro 469 0.277
berlinunderground 158 0.247
kitty 185 0.227
brandenburgertor 1136 0.085
u55 114 0.263
ubahn 4295 0.034
unterdenlinden 573 0.075
gleis 375 0.085
bahnsteig 551 0.058

4.2 Example 2: Hamburg Harbor - “Landungsbrücken”

The second example considers the Hamburg harbor, especially the famous “Lan-
dungsbrücken”. For this location, Figure 6 shows the distribution of several in-
teresting tags in the zoomtable.

For the Hamburg example, we also show complex patterns, i.e., combinations
of tags, in the result tables. Table 7 shows the results of applying the standard
mean distance target concept, while Table 8 shows the results of the fuzzified
target concept, ranging from 1km to 5km (lower, upper parameters).

It is easy to see, that these results support the findings for the Berlin example:
The fuzzified approach is more robust and concentrates on the important tags
well, while the standard approach is suitable on a very macroscopic scale. It
includes tags that are specific for the region, e.g., schleswigholstein or relatively
close cities such as Lingen and Hannover.

5 Related Work

This paper combines approaches from three distinct research areas, that is, pat-
tern mining, mining (geo-)spatial data, and mining social media. First, in con-



Table 3. Brandenburger Tor: top patterns (description size 1) for the target concept
function neighbor , with dmax = 1 km.

Tag Subgroup Size Target Share

berlin 113977 0.225
reichstag 2604 0.829
potsdamerplatz 2017 0.797
heinrichböllstiftung 1211 0.988
berlino 4162 0.461
brandenburgertor 1136 0.816
sonycenter 803 0.923
gendarmenmarkt 696 0.885
potsdamer 577 0.88
bundestag 1096 0.611
brandenburggate 643 0.776
brandenburger 401 0.913
friedrichstrasse 558 0.735
unterdenlinden 573 0.705
panoramapunkt 271 1
holocaustmemorial 301 0.93

Table 4. Brandenburger Tor: top patterns (description size 1) for the target concept
function neighbor and a threshold dmax = 5 km. The last column shows the overall
count of users that used this description.

Tag Subgroup Size Target Share Users

berlin 113977 0.745 5703
kreuzberg 3933 0.961 405
berlino 4162 0.915 392
mitte 3507 0.972 404
reichstag 2604 0.976 680
berlinmitte 3053 0.832 96
potsdamerplatz 2017 0.97 375
hauptstadt 2350 0.892 106
karnevalderkulturen 1851 0.958 36
alexanderplatz 1699 0.989 546
berlijn 2094 0,844 120
berlinwall 1635 0.914 275
graffiti 6136 0.525 838
tiergarten 2497 0.749 287
berĺın 1431 0.931 119
heinrichböllstiftung 1211 1 3

trast to the common pattern mining approaches, we introduce different target
concept (functions), extending the traditional definition of target concepts.



Table 5. Brandenburger Tor: top patterns (description size 1) for the ’fuzzified’ target
concept distance function ranging from 1 km to 5 km.

Tag Subgroup Size Mean Target
Share

berlin 113977 0.46
reichstag 2604 0.05
potsdamerplatz 2017 0.05
mitte 3507 0.42
berlinmitte 3053 0.30
heinrichböllstiftung 1211 0.01
hauptstadt 2350 0.34
brandenburgertor 1136 0.10
alexanderplatz 1699 0.28
city 18246 0.76
tiergarten 2497 0.42
platz 2171 0.4
touristen 2815 0.47
nachbarn 3691 0.55
sonycenter 803 0.02

Table 6. Brandenburger Tor: top patterns (description size 1) using instance weighting
for the target concept function neighbor and a threshold dmax = 5 km.The last column
shows the overall count of users that used this description.

Tag Subgroup Size Target Share Users

berlin 13790.6 0,804 5703
berlino 806.2 0,916 392
reichstag 431.9 0,972 680
mitte 366.3 0,97 404
kreuzberg 371 0,96 405
alexanderplatz 275.6 0,982 546
berlinwall 237.8 0,945 275
berlijn 291.7 0,85 120
fernsehturm 310.8 0,794 725
berĺın 224.9 0,908 119
potsdamerplatz 196.4 0,963 375
wall 548.6 0,597 959
memorial 287.7 0,721 488
eastsidegallery 155.6 0,922 156
graffiti 661.6 0,506 838
brandenburgertor 139.4 0,931 332

Next, (geo-)spatial data mining [16] aims to extract new knowledge from
spatial databases. In this context, often established problem statements and
methods have been transfered to the geo-spatial setting, for example, considering



Fig. 5. An exemplary nt-plot for the location Brandenburgertor, for tags with a max-
imum distance of 5km. Tags that were used more often are shown on the right side of
the diagramm, for example, ”streetart” (16), ”graffiti” (8), or ”urban” (18). Tags that
are very specific for the given target concept, that is, within a 5km area of the Berlin
Brandenburger Tor, are displayed at the top of the diagramm. For example, the tag
”urban” (18) was used relatively often, but it is not specific for the specified location
of interest. However, tags such as ”heinrichböllstiftung” (10), ”alexanderplatz” (1), or
”potsdamerplatz” (14) are very specific (and interesting) for the specified location.

Fig. 6. The zoomtable showing some tags from the Hamburg Harbor

association rules [17]. We incorporate geo-spatial elements constructing distance-
based target concepts according to different intuitions. Also, for the combination
of pattern mining and geo-spatial data, we provide a set of visualizations and
interactive browsing options for a semi-automatic mining approach.

Regarding mining social media, specifically social image data, there have
been several approaches, and the problem of generating representative tags for
a given set of images is an active research topic, see e.g. [5]. Sigurbjörnsson and
van Zwol also analyze Flickr data and provide a characterization of how users



Table 7. Hamburg Harbor: The top patterns (max. description size 2) for the mean
distance target concept.

Tag Subgroup Size Mean Target
Distance (km)

hamburg 29448 9.60
niedersachsen 34672 170.05
berlin 116979 258.34
schleswigholstein 9068 96.75
2010 AND hamburg 5255 7.81
oldenburg 10023 126.02
berlin AND germany 43280 256.95
ostsee 9565 154.41
hannover 8052 138.62
bremen 5656 99.06
lingen 14004 210.85
lingen AND germany 13909 210.82

Table 8. Hamburg Harbor: The top patterns (max. description size 2) for the ’fuzzified’
target concept distance function ranging from 1 km to 5 km.

Tag Subgroup Size Mean Target
Share

hamburg 29448 0,89
deutschland AND hamburg 6127 0.80
hafen AND hamburg 2163 0.69
hansestadt AND hamburg 1376 0.60
deutschland AND hansestadt 1676 0.68
elbe AND hamburg 1786 0.70
schiff AND hamburg 996 0.58
hafen AND elbe 656 0.52
hansestadt 2906 0.81
ship AND hamburg 882 0.63

apply tags and which information is contained in the tag assignments [18]. Their
approach is embedded into a recommendation method for photo tagging, similar
to [19] who analyze different aspects and contexts of the tag and image data.
Abbasi et al. present a method to identify landmark photos using tags and social
Flickr groups [20]. They apply group information and statistical preprocessing
of the tags for obtaining interesting landmark photos.

In contrast to previously proposed techniques, e.g., [6], our approach does not
require a separate clustering step. Furthermore, we focus on descriptive patterns
consisting of tags that are interesting for a specific location; the interestingness
can also be flexibly scaled by tuning the applied quality function. In contrast to
the above automatic approaches, we also present and extend different visualiza-
tions for a semi-automatic interactive approach, integrating the user.



6 Conclusions

In this paper, we have presented an approach for obtaining location-based profiles
for social image media using explorative pattern mining techniques. Candidate
sets of tags, which are specific for the target location are mined automatically
by an adapted pattern mining search step and can be refined subsequently. The
approach enables several options including selectable analysis-specific interest-
ingness measures and semi-automatic feature construction techniques. In an in-
teractive process, the results can then be visualized, introspected and refined.
For demonstrating the applicability and effectiveness, we presented a case study
using real-world data from the photo sharing application Flickr considering two
well-known locations in Germany.

For future work, we aim to consider richer location descriptions as well as
further descriptive data besides tags, e.g., social friendship links in the photo
sharing application, or other link data from social networks. Also, the integra-
tion of information extraction techniques, see for example [21], seems promising,
in order to add information from the textual descriptions of the images. Further-
more, we plan to include more semantics concerning the tags, such that a greater
detail of relations between the tags can be implemented in the preprocessing,
the mining, and the presentation.
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