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Abstract—Detecting anomalous behavior can be of critical 
importance in an industrial application context. While modern 
production sites feature sophisticated alarm management systems, 
they mostly react to single events. Due to the large number and 
various types of data sources a unified approach for anomaly 
detection is not always feasible. One prominent type of data are 
log entries of alarm messages. They allow a higher level of 
abstraction compared to raw sensor readings. In an industrial 
production scenario, we utilize sequential alarm data for anomaly 
detection and analysis, based on first-order Markov chain models. 
We outline hypothesis-driven and description-oriented modeling 
options. Furthermore, we provide an interactive dashboard for 
exploring and visualization of the results. 

Keywords—anomaly detection; exceptional model mining; 
sequence mining; sequential patterns; industry 4.0 

I.  INTRODUCTION 
In many industrial areas, production facilities have reached 

a high level of automation: sensor readings are constantly 
analyzed and may trigger various forms of alarms. Hence, 
knowledge about the respective processes is crucial, e.g., 
targeting the topological structure of a plant, sequences of 
operator notifications (alarms), and unexpected (critical) 
situations. Then, the analysis of (exceptional) sequential patterns 
is an important task for obtaining insights into the process and 
for modelling predictive applications. The research project Early 
detection and decision support for critical situations in 
production environments (short FEE) aims at detecting critical 
situations in production environments as early as possible and to 
support the facility operator in handling these situations, e.g., 
[14]. In abnormal situations, typically such a large number of 
notifications is generated, that it often cannot be physically 
assessed by the operator [2]. Therefore, appropriate abstractions 
and analytics methods are necessary to adapt from a reactive to 
a proactive behavior. The consortium of the FEE project consists 
of several partners also including application partners from the 
chemical industry. These partners provide the use cases for the 
project and background knowledge about the production process 
which is important for designing suitable analytical methods. 

This paper presents the implementation of a comprehensive 
modelling approach for anomaly detection and analysis of 
observed “reference” sequential patterns, based on methods for 
modelling and comparing hypotheses on sequence data [16, 17]. 
Implemented as a new RapidMiner operator and embedded in an 
analytical process, we demonstrate its application. 

II. RELATED WORK 
The investigation of sequential patterns and sequential trails 

are interesting and challenging tasks in data mining and network 
science, in particular in graph mining and social network 
analysis, e.g., [5, 9]. A general view on modeling and mining of 
ubiquitous and social multi-relational data is given in [5] 
focusing on social interaction networks. Here, dynamics and 
evolution of contact patterns [9, 23, 29], for example, and their 
underlying mechanisms, e.g., [33] are analyzed. However, the 
analysis in these contexts focuses on aggregated sequential data. 
Navigational patterns, as sequential (link) patterns in online 
systems, have been analyzed and modeled, e.g., in [35, 40]. In 
contrast to that, our approach focuses on the modeling and 
comparing sequential patterns (hypothesis) in a graph-based 
network representation. 

In a previous work [16] we have presented the DASHTrails 
approach that incorporates probability distributions for deriving 
transitions utilizing HypTrails [39]. Based on that, the 
HypGraphs framework [17] provides a more general modeling 
approach. Using general weight-attributed network 
representations, we can infer transition matrices as graph 
interpretations; HypGraphs consequently also relies on Markov 
chain modeling [29, 35] and Bayesian inference [35, 41]. 

Sequential pattern analysis has also been performed in the 
context of alarm management systems, where sequences are 
represented by the order of alarm notifications. Folmer et al. [21] 
proposed an algorithm for discovering temporal alarm 
dependencies based on conditional probabilities in an adjustable 
time window. To reduce the number of alarms in alarm floods 
Abele et al. [2] performed root cause analysis with a Bayesian 
network approach and compared different methods for learning 
the network probabilities. Vogel-Heuser et al. [41] proposed a 
pattern-based algorithm for identifying causal dependencies in 
the alarm logs, which can be used to aggregate alarm 
information and therefore reduce the load of information for the 
operator. In contrast to those approaches, we provide a 
systematic approach for the analysis of sequential transition 
matrices and its comparison relative to a set of hypotheses. Thus, 
similar to evidence networks in the context of social networks, 
e.g., [32], we model transitions assuming a certain interpretation 
of the data towards a sequential representation. Then, we can 
identify important influence factors. 
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Process Mining [1] aims at the discovery of business process 
related events in a sequence log. The assumption is that event 
logs contain fingerprints of a business process, which can be 
identified by sequence analysis. One task of process mining is 
conformance checking [34, 37] which has been introduced to 
check the matching of an existing business process model with 
the segmentation of the log entries. Compared to these 
approaches, we do not use any apriori knowledge about business 
processes to create our hypothesis. Also, our hypothesis does not 
necessarily need to conform to an existing business process. 

One definition of an anomaly or outlier is, that "an outlier is 
an observation that differs so much from other observations as 
to arouse suspicion that it was generated by a different 
mechanism". Thus, we understand an anomaly as a real-world 
situation, that could be represented as one or more outliers.  In 
the literature those two terms are often used interchangeably. 
Then, interesting, important or exceptional groups [36] can be 
identified. Classic approaches for anomaly detection provide a 
classification of anomalous and normal events. In the industrial 
context finding either significant changes in the multivariate 
sensor readings or managing hundreds of univariate scores for 
single sensors is also a challenge, e.g., described in [30]. In 
contrast to approaches for anomaly detection that only provide a 
classification of anomalous and normal events, we can assess 
different anomaly hypotheses: Applying the proposed approach, 
we can then generate an anomaly indicator – as a potential kind 
of second opinion method for assessing the state of a production 
plant that can help for indicating explanations [15] and traces of 
unusual alarm sequences in the plant. Also, using the network 
representation, we can analyze anomalous episodes relative to 
structural (plant topology) as well as dynamic (alarm sequence) 
episodes. 

III. METHOD 
The detection and analysis of irregular or exceptional 

patterns, i.e., anomalies, in complex-structured heterogeneous 
data is a novel research area, e.g., for identifying new and/or 
emerging behavior, or for identifying detrimental or malicious 
activities. The former can be used for deriving new information 
and knowledge from the data, for identifying events in time or 
space, or for identifying interesting, important or exceptional 
groups. In this paper, we focus on a combined detection and 
analysis approach utilizing heterogeneous data. That is, we 
include semi-structured, as well as structured data for enhancing 
the analysis. Furthermore, we also outline a description-oriented 
technique that does not only allow the detection of the 
anomalous patterns, but also its description using a given set of 
features. The latter relates to the context of descriptive pattern 
mining. In particular, the concept of exceptional model mining, 
e.g., [8, 25, 27] suitably enables such description-oriented 
approaches, adapting methods for the detection of interesting 
subgroups (that is, subgroup discovery) with more advanced 
target concepts for identifying exceptional (anomalous) groups. 

In our application context of an industrial production plants 
in an Industry 4.0 context, cf., [20, 42], we based our anomaly 
detection system on the analysis of the plant topology and alarm 
logs as well as on the similarity based analysis of metric sensor 
readings. The combined approach will compare the insights of 
the two methods. 

1) Anomaly Analytics on Sequential Data 
For sequential data, we formulate the “reference behavior” 

by collecting episodes of normal situations, which is typically 
observed for long running processes. Episodes of alarm 
sequences (formulated as hypotheses) can be compared to the 
normal situations in order to detect deviations, i.e., abnormal 
episodes. We map these sequences to transitions between 
functional units of an industrial plant, applying the modeling 
approach described below. The results can also be used for 
diagnostics, by inspecting the transitions in detail. 

Following HypGraphs [18] and DASHTrails [17], we model 
transition matrices given a probability distribution of certain 
states. The steps we need to perform, as shown in Fig. 1, are:  

1) Modeling: Determine a transition model given the respective 
weighted network using a transition modeling function           
τ : Ω×Ω �R. Transitions between sequential states i,j � Ω  
are captured by the elements mi,j of the transition matrix M, 
i.e., mi,j = τ(i,j). Then, we collect sequential transition 
matrices for the given network (data) and hypotheses. 

2) Estimation: Apply HypTrails [39] on the given data 
transition matrix and the respective hypotheses, and return 
the resulting evidence. 

3) Analysis: Present the results for semi-automatic 
introspection and analysis, e.g., by visualizing the network 
as a heatmap or characteristic sequence of nodes. 

We can model (derived) transition matrices corresponding to 
the observed data, e.g., given frequencies of alarms on 
measurement points, as well as hypotheses on sequences of 
alarms. For data transition matrices, we need to map the 
transitions into derived counts in relation to the data; for 
hypotheses, we provide (normalized) transition probabilities. 
In summary, we utilize Bayesian inference on a first-order 
Markov chain model. As an input, we provide a (data) matrix, 
containing the transitional information (frequencies) of 
transition between the respective states, according to the 
(observed) data. In addition, we utilize a set of hypotheses given 
by (row-normalized) stochastic matrices, modelling the given 
hypotheses. The estimation method outputs an evidence value, 
for each hypothesis, that can be used for ranking. Also, using 

 
Figure 1: Overview on the HypGraphs modeling and analysis process [17]. 

 



the evidence values, we can compare the hypotheses in terms of 
their significance.  
For modeling, we use the freely available RapidMiner [31] 
extension of HypGraphs1, that calculates the evidence values 
for different believe weights k and compares them directly with 
the given hypothesis and a random transition as a lower bound. 
The evidence scores and transition matrices are displayed in an 
interactive dashboard, as shown in Figure 2. 

As an extension to the hypothesis-based approach, we can 
furthermore include descriptive information, that is, features of 
the dataset for identifying patterns capturing anomalous 
behavior [11]. For that, we can consider the transition matrix as 
a graph, for which we can then we include node and/or edge 
labels. That is, the edges of the graph (modeling specific 
transitions between nodes) are labeled according to descriptive 
properties, e.g., capturing properties of the specific sequences 
the transitions were derived from. Then, using a specific set of 
labels we can select a set of edges, that is, all edges having the 
respective label set, inducing a subgraph which corresponds to 
a set of transitions having the respective labeling. Then, we can 
define an anomaly pattern as the respective label set and its 
corresponding (induced) subgraph, covering a subset of nodes 
and set transitions, respectively. In that way, we can not only 
include anomalous episodes in the sequential anomaly detection 
step, but we can include descriptive information for enabling 

                                                             
1 https://github.com/rapidminer/rapidminer-extension-hypgraphs/releases 

further inspection, explanation and/or exemplification [10, 15] 
by the operator or the process engineer. Thus, the descriptive 

Figure 2: RapidMiner Dashboard showing the HypGraphs transition scores (left) and the raw transition matrices (right), as transitions between different 
components of a plant visualized as a heatmap. It is possible to select a specific hypothesis for which the evidence scores are calculated and displayed. 

 

Figure 3: Example of a (conceptual) knowledge graph [14]. 



features can, e.g., indicate important indicators for anomalies 
like sensors or alarm related labels as proxies for specific faults. 
The descriptive information can, for example, be derived by the 
integration of unstructured information such as plant topology 
information derived from a Knowledge Graph [14]. Such a 
graph can be constructed from heterogeneous information, such 
as sensor measurements, alarm logs, process and 
instrumentation diagrams (P&IDs), shift books, operation 
manuals etc. Figure 3 shows an abstracted example of a 
knowledge graph showing the conceptual plant-subplant 
relations and measurements [14], while Figure 4 shows an 
anonymized example of a larger plant context. 

2) Anomaly Detection on Metric Data 
For detecting outliers on the numeric sensor data we apply 

the Local Outlier Factor (LOF) algorithm by Breunig et al. [18], 
as implemented in the Anomaly Detection extension [31] for 
RapidMiner. The algorithm estimates local deviations of the 
data points using a defined distance function. It compares the 
local density of a point to the density of its k nearest neighbors. 
Due to the nature of the provided sensor data, the concept of a 
locally sensitive algorithm is useful, because with different set 
points (for plant operation) range and characteristics of the 
sensor readings can vary greatly. The outlier scores can be 
calculated for either all available sensors, for certain subgroups, 
or single sensors, depending on the desired granularity. 

IV. PROCESS MODEL & IMPLEMENTATION  
Distributed storage and computation systems, can handle 

the evaluation of several years of production data. In the context 
of the FEE project we want to build upon a two-layered 
computation architecture to enable the plant operators and 
system engineers to design and test their processes on a local 
machine and execute memory and computational intensive 
processes in the Hadoop infrastructure [19, 24].  

The first part of the analytical workflow is to build the 
transition network for training and testing the hypotheses. We 
build these hypotheses on real plant data and calculate the 
transition matrices for hourly time slots over a period of two 
months. In the same way, after further preprocessing 
(smoothing and down-sampling) we aggregate the raw sensor 
data. The calculated outlier score is shown in Figure 5, together 
with the evidence scores. A high outlier score indicates possible 
anomalous sensor readings and a low evidence score indicates 
deviating transition patterns in the alarm sequences. As one can 
see, the two values are apparently not strongly correlated. But 
this shows, that the two algorithms monitor different aspects of 
the plant behavior: the lowest evidence scores occur in the early 
morning hours with nearly no alarm transitions (when normally 
several dozen alarms are recorded per hour). 

For further inspecting the outlier scores, we have built 
another dashboard. This shows the k highest outlier score for 
single sensor readings for a selected time segment, for example 
by clicking on a specific time point in the dashboard from 
Figure 5. In addition, this board shows the associated sensor 
readings. With this drill-down from a high level of abstraction 
for a whole processing unit down to single sensor readings, a 
process engineer is able to identify and inspect possible critical 
situations in a convenient way. 

 

V. CONCLUSION AND FUTURE WORK 
This paper presented a sequential modelling and anomaly 

analytics approach in an industrial application context. Based 
on first order Markov chain models and methods for modelling 
and comparing networks and transition matrices, we sketched 
an approach for comparing hypotheses with observed 
“reference” sequential patterns. Furthermore, we described the 
extension to integrating descriptive information in the 
sequential modeling approach. In addition, we also showed a 
comparison between our approach and an established outlier 
detection algorithm. It became evident that both methods target 
different aspects of detecting anomalous behavior. 

For future work, we aim at extending the proposed approach 
by integrating the knowledge gained from the conceptual 
knowledge graph, e.g., by grouping and analyzing the outlier 
scores for the sensors associated with specific functional units. 
We also plan to integrate the system into the Big data 
architecture proposed in [24]. As outlined above, we want to 
extend that two-layered computation architecture for enabling 
flexible and powerful Big data processing approaches, also 
including large-scale descriptive subgroup [26], sequence [38, 
43], and graph mining methods [13] for efficient exceptional 
model mining and anomaly analytics. 

 
Figure 5: Overview of outlier scores and HypGraphs evidence values. A high 
outlier score indicates anomalous sensor readings, while a low the evidence 
score indicates deviating alarm sequences 

 

Figure 4: Larger (anonymized) example of a knowledge graph. 
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